IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v138y2018icp90-94.html
   My bibliography  Save this article

A weighted M-estimator for linear regression models with randomly truncated data

Author

Listed:
  • Du, Jiang
  • Zhang, Zhongzhan
  • Xie, Tianfa

Abstract

This paper considers M-estimation for randomly truncated data. We propose a new estimation for left truncated data, and establish the sample properties of the proposed estimator. Finite sample performance of the proposed estimator is investigated via simulation studies.

Suggested Citation

  • Du, Jiang & Zhang, Zhongzhan & Xie, Tianfa, 2018. "A weighted M-estimator for linear regression models with randomly truncated data," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 90-94.
  • Handle: RePEc:eee:stapro:v:138:y:2018:i:c:p:90-94
    DOI: 10.1016/j.spl.2018.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218301007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.02.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elias Ould-Saïd & Mohamed Lemdani, 2006. "Asymptotic Properties of a Nonparametric Regression Function Estimator with Randomly Truncated Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 357-378, June.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    3. Arcones, Miguel A., 1996. "The Bahadur-Kiefer Representation of Lp Regression Estimators," Econometric Theory, Cambridge University Press, vol. 12(2), pages 257-283, June.
    4. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    5. Zhou, Weihua, 2011. "A weighted quantile regression for randomly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 554-566, January.
    6. Zeckhauser, Richard & Thompson, Mark, 1970. "Linear Regression with Non-Normal Error Terms," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 280-286, August.
    7. Frumento, Paolo & Bottai, Matteo, 2017. "An estimating equation for censored and truncated quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 53-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jiang & Sun, Zhimeng & Xie, Tianfa, 2013. "M-estimation for the partially linear regression model under monotonic constraints," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1353-1363.
    2. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    3. Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2011. "Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis," Working Papers ECARES ECARES 2011-038, ULB -- Universite Libre de Bruxelles.
    4. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 693-724.
    5. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    6. Honda, Toshio, 2013. "Nonparametric LAD cointegrating regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 150-162.
    7. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    8. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    9. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    10. Elise Coudin & Jean-Marie Dufour, 2017. "Finite-sample generalized confidence distributions and sign-based robust estimators in median regressions with heterogenous dependent errors," CIRANO Working Papers 2017s-06, CIRANO.
    11. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    12. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    13. Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
    14. Fan, Rui & Lee, Ji Hyung, 2019. "Predictive quantile regressions under persistence and conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(1), pages 261-280.
    15. Jiang Du & Zhongzhan Zhang & Tianfa Xie, 2017. "Focused information criterion and model averaging in censored quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 547-570, July.
    16. Alexander Aue & Rex C. Y. Cheung & Thomas C. M. Lee & Ming Zhong, 2014. "Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1241-1256, September.
    17. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    18. Hong-Xia Xu & Zhen-Long Chen & Jiang-Feng Wang & Guo-Liang Fan, 2019. "Quantile regression and variable selection for partially linear model with randomly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1137-1160, August.
    19. Tae-Hwan Kim, & Christophe Muller, 2012. "Bias Transmission and Variance Reduction in Two-Stage Quantile Regression," AMSE Working Papers 1221, Aix-Marseille School of Economics, France.
    20. Han-Ying Liang & Elias Ould Saïd, 2018. "A weighted estimator of conditional hazard rate with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 155-189, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:138:y:2018:i:c:p:90-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.