IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v64y1996i2p143-152.html
   My bibliography  Save this article

Alternative micropulses and fractional Brownian motion

Author

Listed:
  • Cioczek-Georges, R.
  • Mandelbrot, B. B.

Abstract

We showed in an earlier paper (1995a) that negatively correlated fractional Brownian motion (FBM) can be generated as a fractal sum of one kind of micropulses (FSM). That is, FBM of exponent is the limit (in the sense of finite-dimensional distributions) of a certain sequence of processes obtained as sums of rectangular pulses. We now show that more general pulses yield a wide range of FBMs: either negatively (as before) or positively () correlated. We begin with triangular (conical and semi-conical) pulses. To transform them into micropulses, the base angle is made to decrease to zero, while the number of pulses, determined by a Poisson random measure, is made to increase to infinity. Then we extend our results to more general pulse shapes.

Suggested Citation

  • Cioczek-Georges, R. & Mandelbrot, B. B., 1996. "Alternative micropulses and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 64(2), pages 143-152, November.
  • Handle: RePEc:eee:spapps:v:64:y:1996:i:2:p:143-152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(96)00089-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cioczek-Georges, R. & Mandelbrot, B. B., 1995. "A class of micropulses and antipersistent fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mine Caglar, 2011. "Stock Price Processes with Infinite Source Poisson Agents," Papers 1106.6300, arXiv.org.
    2. Serge Cohen & Murad S. Taqqu, 2004. "Small and Large Scale Behavior of the Poissonized Telecom Process," Methodology and Computing in Applied Probability, Springer, vol. 6(4), pages 363-379, December.
    3. Gaigalas, Raimundas, 2006. "A Poisson bridge between fractional Brownian motion and stable Lévy motion," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 447-462, March.
    4. Jumarie, Guy, 2007. "Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 969-987.
    5. Hermine Biermé & Anne Estrade & Ingemar Kaj, 2010. "Self-similar Random Fields and Rescaled Random Balls Models," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1110-1141, December.
    6. Jumarie, Guy, 2009. "Probability calculus of fractional order and fractional Taylor’s series application to Fokker–Planck equation and information of non-random functions," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1428-1448.
    7. Jumarie, Guy, 2009. "From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1590-1604.
    8. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
    10. M. Çağlar, 2004. "A Long-Range Dependent Workload Model for Packet Data Traffic," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 92-105, February.
    11. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
    12. Jumarie, Guy, 2006. "Fractionalization of the complex-valued Brownian motion of order n using Riemann–Liouville derivative. Applications to mathematical finance and stochastic mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1285-1305.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    2. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    3. Gil-Alana, Luis A., 2003. "A Univariate Analysis of Unemployment and Inflation in Italy: A Fractionally Integrated Approach," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    4. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    5. Guglielmo Maria Caporale & Luis Gil-Alana, 2004. "Long range dependence in daily stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 14(6), pages 375-383.
    6. Gil-Alana, Luis A., 2004. "Modelling the U.S. interest rate in terms of I(d) statistical models," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(4), pages 475-486, September.
    7. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    8. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    9. Jumarie, Guy, 2007. "Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 969-987.
    10. Christian Fischer & Luis Gil-Alana, 2009. "The nature of the relationship between international tourism and international trade: the case of German imports of Spanish wine," Applied Economics, Taylor & Francis Journals, vol. 41(11), pages 1345-1359.
    11. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, September.
    12. Jumarie, Guy, 2009. "Probability calculus of fractional order and fractional Taylor’s series application to Fokker–Planck equation and information of non-random functions," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1428-1448.
    13. Jumarie, Guy, 2006. "Fractionalization of the complex-valued Brownian motion of order n using Riemann–Liouville derivative. Applications to mathematical finance and stochastic mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1285-1305.
    14. Luis Gil-Alana, 2003. "Stochastic behavior of nominal exchange rates," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 31(2), pages 159-173, June.
    15. Gourieroux, Christian & Jasiak, Joann, 2001. "Memory and infrequent breaks," Economics Letters, Elsevier, vol. 70(1), pages 29-41, January.
    16. Rea, William & Oxley, Les & Reale, Marco & Brown, Jennifer, 2013. "Not all estimators are born equal: The empirical properties of some estimators of long memory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 29-42.
    17. Luis Gil-Alana, 2004. "The dynamics of the real exchange rates in Europe: a comparative study across countries using fractional integration," Applied Economics Letters, Taylor & Francis Journals, vol. 11(7), pages 429-432.
    18. Hermine Biermé & Anne Estrade & Ingemar Kaj, 2010. "Self-similar Random Fields and Rescaled Random Balls Models," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1110-1141, December.
    19. Richard T. Baillie & George Kapetanios, 2006. "Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates," Working Papers 570, Queen Mary University of London, School of Economics and Finance.
    20. Francis Ahking, 2010. "Non-parametric tests of real exchange rates in the post-Bretton Woods era," Empirical Economics, Springer, vol. 39(2), pages 439-456, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:64:y:1996:i:2:p:143-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.