IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001065.html
   My bibliography  Save this article

A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics

Author

Listed:
  • Nuugulu, Samuel M
  • Gideon, Frednard
  • Patidar, Kailash C

Abstract

Empirical evidence suggest that fractional stochastic based models are well suited for modelling systems and phenomenons exhibiting memory and hereditary properties. Assuming that the stock market exhibits some unexplained memory structures, described by a non-random fractional stochastic process governed under a standard Brownian motion, we derive a time-fractional Black-Scholes (tfBS) partial differential equation for pricing option contracts on such stocks. We further propose a corresponding robust numerical method which is based on the extension of a Crank Nicholson finite difference method for solving tfBS-PDEs. Through rigorous theoretical analysis, we established that the method is unconditionally stable and convergent up to order O(k2+h2). Two numerical examples are presented using realistic market parameters. Our results confirm theoretical observations and general consensus in literature that, stock market dynamics are of a power law nature and follow heavy tailed distributions with memory.

Suggested Citation

  • Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001065
    DOI: 10.1016/j.chaos.2021.110753
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleinert, H. & Korbel, J., 2016. "Option pricing beyond Black–Scholes based on double-fractional diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 200-214.
    2. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Jumarie, Guy, 2005. "Merton's model of optimal portfolio in a Black-Scholes Market driven by a fractional Brownian motion with short-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 585-598, December.
    5. Panas, E., 2001. "Long memory and chaotic models of prices on the London Metal Exchange," Resources Policy, Elsevier, vol. 27(4), pages 235-246, December.
    6. Cioczek-Georges, R. & Mandelbrot, B. B., 1996. "Alternative micropulses and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 64(2), pages 143-152, November.
    7. Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
    8. Fenghua Wen & Zhifeng Liu, 2009. "A Copula-Based Correlation Measure And Its Application In Chinese Stock Market," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 787-801.
    9. Hagen Kleinert & Jan Korbel, 2015. "Option Pricing Beyond Black-Scholes Based on Double-Fractional Diffusion," Papers 1503.05655, arXiv.org, revised Mar 2016.
    10. Abdon Atangana & Aydin Secer, 2013. "A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, April.
    11. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Abdi, N. & Aminikhah, H. & Sheikhani, A.H. Refahi, 2022. "High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan M. Romero & Ilse B. Zubieta-Mart'inez, 2016. "Relativistic Quantum Finance," Papers 1604.01447, arXiv.org.
    2. Jean-Philippe Aguilar, 2017. "A series representation for the Black-Scholes formula," Papers 1710.01141, arXiv.org, revised Oct 2017.
    3. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2017. "Series representation of the pricing formula for the European option driven by space-time fractional diffusion," Papers 1712.04990, arXiv.org, revised Oct 2018.
    4. Olkhov, Victor, 2020. "Classical Option Pricing and Some Steps Further," MPRA Paper 105431, University Library of Munich, Germany, revised 28 Dec 2020.
    5. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2016. "Non-Gaussian analytic option pricing: a closed formula for the L\'evy-stable model," Papers 1609.00987, arXiv.org, revised Nov 2017.
    6. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    7. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    8. Fadugba, Sunday Emmanuel, 2020. "Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    10. Lin, Zhongguo & Han, Liyan & Li, Wei, 2021. "Option replication with transaction cost under Knightian uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    11. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Alghalith, Moawia, 2020. "Pricing options under simultaneous stochastic volatility and jumps: A simple closed-form formula without numerical/computational methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    15. Hinderks, W.J. & Wagner, A., 2019. "Pricing German Energiewende products: Intraday cap/floor futures," Energy Economics, Elsevier, vol. 81(C), pages 287-296.
    16. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    17. Panumart Sawangtong & Kamonchat Trachoo & Wannika Sawangtong & Benchawan Wiwattanapataphee, 2018. "The Analytical Solution for the Black-Scholes Equation with Two Assets in the Liouville-Caputo Fractional Derivative Sense," Mathematics, MDPI, vol. 6(8), pages 1-14, July.
    18. Liu, He & Song, Wanqing & Li, Ming & Kudreyko, Aleksey & Zio, Enrico, 2020. "Fractional Lévy stable motion: Finite difference iterative forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    19. Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
    20. Melek AKSU & Şakir SAKARYA, 2018. "Pricing of Covered Warrants: An Analysis on Borsa İstanbul," Sosyoekonomi Journal, Sosyoekonomi Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.