IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i1p271-287.html
   My bibliography  Save this article

Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations

Author

Listed:
  • Jumarie, Guy

Abstract

Stock exchange dynamics of fractional order are usually modeled as a non-random exponential growth process driven by a fractional Brownian motion. Here we propose to use rather a non-random fractional growth driven by a (standard) Brownian motion. The key is the Taylor's series of fractional order where E[alpha](.) denotes the Mittag-Leffler function, and is the so-called modified Riemann-Liouville fractional derivative which we introduced recently to remove the effects of the non-zero initial value of the function under consideration. Various models of fractional dynamics for stock exchange are proposed, and their solutions are obtained. Mainly, the Itô's lemma of fractional order is illustrated in the special case of a fractional growth with white noise. Prospects for the Merton's optimal portfolio are outlined, the path probability density of fractional stock exchange dynamics is obtained, and two fractional Black-Scholes equations are derived. This approach avoids using fractional Brownian motion and thus is of some help to circumvent the mathematical difficulties so involved.

Suggested Citation

  • Jumarie, Guy, 2008. "Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 271-287, February.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:271-287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00034-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cioczek-Georges, R. & Mandelbrot, B. B., 1996. "Alternative micropulses and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 64(2), pages 143-152, November.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    2. Lina Song, 2018. "A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    3. S. Banihashemi & A. Ghasemifard & A. Babaei, 2024. "On the Numerical Option Pricing Methods: Fractional Black-Scholes Equations with CEV Assets," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1463-1488, September.
    4. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
    5. Yasar Bolat & Murat Gevgeşoğlu & George E. Chatzarakis, 2024. "On the Qualitative Analysis of Solutions of Two Fractional Order Fractional Differential Equations," Mathematics, MDPI, vol. 12(16), pages 1-7, August.
    6. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Anshima Singh & Sunil Kumar, 2024. "An Efficient Numerical Method Based on Exponential B-splines for a Time-Fractional Black–Scholes Equation Governing European Options," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 1965-2002, October.
    8. Haq, Sirajul & Hussain, Manzoor, 2018. "Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 248-263.
    9. R. Kalantari & S. Shahmorad, 2019. "A Stable and Convergent Finite Difference Method for Fractional Black–Scholes Model of American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 191-205, January.
    10. Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
    11. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Yan, Ruifang & He, Ying & Zuo, Qian, 2021. "A difference method with parallel nature for solving time-space fractional Black-Schole model," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Y. Esmaeelzade Aghdam & H. Mesgarani & A. Amin & J. F. Gómez-Aguilar, 2024. "An Efficient Numerical Scheme to Approach the Time Fractional Black–Scholes Model Using Orthogonal Gegenbauer Polynomials," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 211-224, July.
    14. Xin Cai & Yihong Wang, 2024. "A Novel Fourth-Order Finite Difference Scheme for European Option Pricing in the Time-Fractional Black–Scholes Model," Mathematics, MDPI, vol. 12(21), pages 1-23, October.
    15. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    3. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    4. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    5. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    6. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    7. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    8. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    9. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    10. Gordian Rättich & Kim Clark & Evi Hartmann, 2011. "Performance measurement and antecedents of early internationalizing firms: A systematic assessment," Working Papers 0031, College of Business, University of Texas at San Antonio.
    11. Paul Ormerod, 2010. "La crisis actual y la culpabilidad de la teoría macroeconómica," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 12(22), pages 111-128, January-J.
    12. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    13. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    14. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    15. Vorst, A. C. F., 1988. "Option Pricing And Stochastic Processes," Econometric Institute Archives 272366, Erasmus University Rotterdam.
    16. Dybvig, Philip H. & Gong, Ning & Schwartz, Rachel, 2000. "Bias of Damage Awards and Free Options in Securities Litigation," Journal of Financial Intermediation, Elsevier, vol. 9(2), pages 149-168, April.
    17. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    18. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    19. Yonggu Kim & Keeyoung Shin & Joseph Ahn & Eul-Bum Lee, 2017. "Probabilistic Cash Flow-Based Optimal Investment Timing Using Two-Color Rainbow Options Valuation for Economic Sustainability Appraisement," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    20. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:271-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.