IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p1590-1604.html
   My bibliography  Save this article

From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series

Author

Listed:
  • Jumarie, Guy

Abstract

By considering a coarse-grained space as a space in which the point is not infinitely thin, but rather has a thickness, one can arrive at an equivalence, on the modeling standpoint, between coarse-grained space and fractal space. Then, using fractional analysis (slightly different from the standard formal fractional calculus), one obtains a velocity conversion formula which converts problems in fractal space to problems in fractal time, therefore one can apply the corresponding fractional Lagrangian theory (previously proposed by the author). The corresponding fractal Schrödinger’s equation then appears as a direct consequence of the usual correspondence rules. In this framework, the fractal generalization of the Minkowskian pseudo-geodesic is straightforward.

Suggested Citation

  • Jumarie, Guy, 2009. "From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1590-1604.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1590-1604
    DOI: 10.1016/j.chaos.2008.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jumarie, Guy, 2009. "Probability calculus of fractional order and fractional Taylor’s series application to Fokker–Planck equation and information of non-random functions," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1428-1448.
    2. Cioczek-Georges, R. & Mandelbrot, B. B., 1995. "A class of micropulses and antipersistent fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 1-18, November.
    3. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    4. Cioczek-Georges, R. & Mandelbrot, B. B., 1996. "Alternative micropulses and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 64(2), pages 143-152, November.
    5. El Naschie, M.S., 2005. "On Penrose view of transfinite sets and computability and the fractal character of E-infinity spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 531-533.
    6. Jumarie, Guy, 2007. "Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 969-987.
    7. Anh, V. V. & Leonenko, N. N., 2000. "Scaling laws for fractional diffusion-wave equations with singular data," Statistics & Probability Letters, Elsevier, vol. 48(3), pages 239-252, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yahao & Wang, Xiao-Tian & Wu, Min, 2009. "Fractional-moment CAPM with loss aversion," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1406-1414.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jumarie, Guy, 2007. "Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 969-987.
    2. Jumarie, Guy, 2009. "Probability calculus of fractional order and fractional Taylor’s series application to Fokker–Planck equation and information of non-random functions," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1428-1448.
    3. Wu, Yahao & Wang, Xiao-Tian & Wu, Min, 2009. "Fractional-moment CAPM with loss aversion," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1406-1414.
    4. Jumarie, Guy, 2006. "Fractionalization of the complex-valued Brownian motion of order n using Riemann–Liouville derivative. Applications to mathematical finance and stochastic mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1285-1305.
    5. Hermine Biermé & Anne Estrade & Ingemar Kaj, 2010. "Self-similar Random Fields and Rescaled Random Balls Models," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1110-1141, December.
    6. Li, Hui & Wu, Min & Wang, Xiao-Tian, 2009. "Fractional-moment Capital Asset Pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 412-421.
    7. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    8. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    9. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    10. El Naschie, M.S., 2008. "Quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 6-8.
    11. Yin, Xin-An & Yang, Xiao-Hua & Yang, Zhi-Feng, 2009. "Using the R/S method to determine the periodicity of time series," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 731-745.
    12. Liang, Y.S. & Su, W.Y., 2007. "The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 682-692.
    13. El Naschie, M.S., 2008. "The fundamental algebraic equations of the constants of nature," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 320-322.
    14. El Naschie, M.S., 2008. "Quarks confinement via Kaluza–Klein theory as a topological property of quantum classical spacetime phase transition," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 825-829.
    15. Liu, Zhanwei & Hu, Guoen & Lu, Zhibo, 2009. "Parseval frame scaling sets and MSF Parseval frame wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1966-1974.
    16. Li, Dengfeng & Wu, Guochang, 2009. "Construction of a class of Daubechies type wavelet bases," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 620-625.
    17. El Naschie, M.S., 2008. "Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 420-422.
    18. Özer, Mehmet Naci & Taşcan, Filiz, 2009. "Derivation of Korteweg–de Vries flow equations from nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2265-2270.
    19. Mine Caglar, 2011. "Stock Price Processes with Infinite Source Poisson Agents," Papers 1106.6300, arXiv.org.
    20. El Naschie, M.S., 2008. "Conjectures regarding kissing spheres hierarchy and quantum gravity unification," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 346-350.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1590-1604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.