IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i4p2200-2227.html
   My bibliography  Save this article

Perturbation bounds for Monte Carlo within Metropolis via restricted approximations

Author

Listed:
  • Medina-Aguayo, Felipe
  • Rudolf, Daniel
  • Schweizer, Nikolaus

Abstract

The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis–Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the nth step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain.

Suggested Citation

  • Medina-Aguayo, Felipe & Rudolf, Daniel & Schweizer, Nikolaus, 2020. "Perturbation bounds for Monte Carlo within Metropolis via restricted approximations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2200-2227.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2200-2227
    DOI: 10.1016/j.spa.2019.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918305210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breyer, Laird & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2001. "A note on geometric ergodicity and floating-point roundoff error," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 123-127, June.
    2. Jarner, Søren Fiig & Hansen, Ernst, 2000. "Geometric ergodicity of Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 341-361, February.
    3. Jaewoo Park & Murali Haran, 2018. "Bayesian Inference in the Presence of Intractable Normalizing Functions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1372-1390, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray Pollock & Paul Fearnhead & Adam M. Johansen & Gareth O. Roberts, 2020. "Quasi‐stationary Monte Carlo and the ScaLE algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1167-1221, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
    2. Chris Sherlock & Anthony Lee, 2022. "Variance Bounding of Delayed-Acceptance Kernels," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2237-2260, September.
    3. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    4. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    5. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    6. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    7. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    8. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    9. Fort, Gersende & Moulines, Eric, 2000. "V-Subgeometric ergodicity for a Hastings-Metropolis algorithm," Statistics & Probability Letters, Elsevier, vol. 49(4), pages 401-410, October.
    10. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    11. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    12. David A. Spade, 2020. "Geometric ergodicity of a Metropolis-Hastings algorithm for Bayesian inference of phylogenetic branch lengths," Computational Statistics, Springer, vol. 35(4), pages 2043-2076, December.
    13. Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
    14. Vihola, Matti, 2011. "On the stability and ergodicity of adaptive scaling Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2839-2860.
    15. Franks, Jordan & Vihola, Matti, 2020. "Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6157-6183.
    16. Yves Atchade, 2005. "An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift," RePAd Working Paper Series LRSP-WP1, Département des sciences administratives, UQO.
    17. RADU HERBEI & IAN W. McKEAGUE, 2009. "Hybrid Samplers for Ill‐Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 839-853, December.
    18. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    19. Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
    20. Yves F. Atchadé, 2006. "An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 235-254, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:4:p:2200-2227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.