Quasi‐stationary Monte Carlo and the ScaLE algorithm
Author
Abstract
Suggested Citation
DOI: 10.1111/rssb.12365
Download full text from publisher
References listed on IDEAS
- Murray Pollock, 2015. "On the Exact Simulation of (Jump) Diffusion Bridges," Papers 1505.03030, arXiv.org.
- Dalalyan, Arnak S. & Karagulyan, Avetik, 2019.
"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient,"
Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
- Arnak Dalalyan & Avetik Karagulyan, 2017. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Working Papers 2017-20, Center for Research in Economics and Statistics.
- Devroye, Luc, 2009. "On exact simulation algorithms for some distributions related to Jacobi theta functions," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2251-2259, November.
- Alexandre Bouchard-Côté & Sebastian J. Vollmer & Arnaud Doucet, 2018. "The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 855-867, April.
- Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "A Factorisation of Diffusion Measure and Finite Sample Path Constructions," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 85-104, March.
- Burq, Zaeem A. & Jones, Owen D., 2008. "Simulation of Brownian motion at first-passage times," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 64-71.
- Bierkens, Joris & Bouchard-Côté, Alexandre & Doucet, Arnaud & Duncan, Andrew B. & Fearnhead, Paul & Lienart, Thibaut & Roberts, Gareth & Vollmer, Sebastian J., 2018. "Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 148-154.
- Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
- Medina-Aguayo, Felipe & Rudolf, Daniel & Schweizer, Nikolaus, 2020. "Perturbation bounds for Monte Carlo within Metropolis via restricted approximations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2200-2227.
- Johansen, Adam M. & Doucet, Arnaud, 2008. "A note on auxiliary particle filters," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1498-1504, September.
- Cheng Li & Sanvesh Srivastava & David B. Dunson, 2017. "Simple, scalable and accurate posterior interval estimation," Biometrika, Biometrika Trust, vol. 104(3), pages 665-680.
- Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
- Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M Ludkin & C Sherlock, 2023. "Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm," Biometrika, Biometrika Trust, vol. 110(2), pages 301-318.
- Bertazzi, Andrea & Bierkens, Joris & Dobson, Paul, 2022. "Approximations of Piecewise Deterministic Markov Processes and their convergence properties," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 91-153.
- Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Wanmo Kang & Jong Mun Lee, 2019. "Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 334-353, February.
- Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
- Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
- Hengtao Zhang & Guosheng Yin, 2021. "Response‐adaptive rerandomization," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1281-1298, November.
- Andrew Gelman & Daniel Lee & Jiqiang Guo, 2015. "Stan," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 530-543, October.
- Zuoxian Gan & Tao Feng & Min Yang, 2018. "Exploring the Effects of Car Ownership and Commuting on Subjective Well-Being: A Nationwide Questionnaire Study," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
- Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Markussen, Bo, 2009. "Laplace approximation of transition densities posed as Brownian expectations," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 208-231, January.
- Julie Lyng Forman & Michael Sørensen, 2008.
"The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
- Michael Sørensen & Julie Lyng Forman, 2007. "The Pearson diffusions: A class of statistically tractable diffusion processes," CREATES Research Papers 2007-28, Department of Economics and Business Economics, Aarhus University.
- Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
- Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
- Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017.
"The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
- Baştürk, N. & Grassi, S. & Hoogerheide, L. & Opschoor, A. & van Dijk, H.K., 2015. "The R package MitISEM : efficient and robust simulation procedures for Bayesian inference," Research Memorandum 011, Maastricht University, Graduate School of Business and Economics (GSBE).
- Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2017. "The R package MitISEM: Efficient and robust simulation procedures for Bayesian inference," Working Paper 2017/10, Norges Bank.
- Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2015. "The R-package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Tinbergen Institute Discussion Papers 15-042/III, Tinbergen Institute, revised 04 Jul 2017.
- Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
- White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:5:p:1167-1221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.