IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v49y2000i4p401-410.html
   My bibliography  Save this article

V-Subgeometric ergodicity for a Hastings-Metropolis algorithm

Author

Listed:
  • Fort, Gersende
  • Moulines, Eric

Abstract

We study the symmetric random-walk Hastings-Metropolis algorithm in situations where the density is not log-concave in the tails. We show that, under mild technical conditions this algorithm is V-ergodic at a subgeometrical rate.

Suggested Citation

  • Fort, Gersende & Moulines, Eric, 2000. "V-Subgeometric ergodicity for a Hastings-Metropolis algorithm," Statistics & Probability Letters, Elsevier, vol. 49(4), pages 401-410, October.
  • Handle: RePEc:eee:stapro:v:49:y:2000:i:4:p:401-410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00074-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jarner, Søren Fiig & Hansen, Ernst, 2000. "Geometric ergodicity of Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 341-361, February.
    2. O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 283-306, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanha Noh, 2020. "Posterior Inference on Parameters in a Nonlinear DSGE Model via Gaussian-Based Filters," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 795-841, December.
    2. Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
    3. Mika Meitz & Pentti Saikkonen, 2022. "Subgeometrically ergodic autoregressions with autoregressive conditional heteroskedasticity," Papers 2205.11953, arXiv.org, revised Apr 2023.
    4. Sarantsev, Andrey, 2021. "Sub-exponential rate of convergence to equilibrium for processes on the half-line," Statistics & Probability Letters, Elsevier, vol. 175(C).
    5. Mika Meitz & Pentti Saikkonen, 2019. "Subgeometric ergodicity and $\beta$-mixing," Papers 1904.07103, arXiv.org, revised Apr 2019.
    6. Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
    2. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    3. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    4. Franks, Jordan & Vihola, Matti, 2020. "Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6157-6183.
    5. Yves Atchade, 2005. "An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift," RePAd Working Paper Series LRSP-WP1, Département des sciences administratives, UQO.
    6. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    7. RADU HERBEI & IAN W. McKEAGUE, 2009. "Hybrid Samplers for Ill‐Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 839-853, December.
    8. Chris Sherlock & Anthony Lee, 2022. "Variance Bounding of Delayed-Acceptance Kernels," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2237-2260, September.
    9. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    10. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    11. Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
    12. G. O. Roberts & O. Stramer, 2002. "Langevin Diffusions and Metropolis-Hastings Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 4(4), pages 337-357, December.
    13. Yves F. Atchadé, 2006. "An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 235-254, June.
    14. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    15. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    16. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    17. Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
    18. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    19. Samuel Livingstone, 2021. "Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance," Mathematics, MDPI, vol. 9(4), pages 1-14, February.
    20. O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 307-328, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:49:y:2000:i:4:p:401-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.