IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i2p496-523.html
   My bibliography  Save this article

The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC

Author

Listed:
  • Samuel Livingstone
  • Giacomo Zanella

Abstract

There is a tension between robustness and efficiency when designing Markov chain Monte Carlo (MCMC) sampling algorithms. Here we focus on robustness with respect to tuning parameters, showing that more sophisticated algorithms tend to be more sensitive to the choice of step‐size parameter and less robust to heterogeneity of the distribution of interest. We characterise this phenomenon by studying the behaviour of spectral gaps as an increasingly poor step‐size is chosen for the algorithm. Motivated by these considerations, we propose a novel and simple gradient‐based MCMC algorithm, inspired by the classical Barker accept‐reject rule, with improved robustness properties. Extensive theoretical results, dealing with robustness to tuning, geometric ergodicity and scaling with dimension, suggest that the novel scheme combines the robustness of simple schemes with the efficiency of gradient‐based ones. We show numerically that this type of robustness is particularly beneficial in the context of adaptive MCMC, giving examples where our proposed scheme significantly outperforms state‐of‐the‐art alternatives.

Suggested Citation

  • Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:2:p:496-523
    DOI: 10.1111/rssb.12482
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12482
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jarner, Søren Fiig & Hansen, Ernst, 2000. "Geometric ergodicity of Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 341-361, February.
    2. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    3. Giacomo Zanella, 2020. "Informed Proposals for Local MCMC in Discrete Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 852-865, April.
    4. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    5. Yves F. Atchadé, 2006. "An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 235-254, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jure Vogrinc & Samuel Livingstone & Giacomo Zanella, 2023. "Optimal design of the Barker proposal and other locally balanced Metropolis–Hastings algorithms," Biometrika, Biometrika Trust, vol. 110(3), pages 579-595.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    2. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    3. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    4. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    5. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    6. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    7. Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
    8. Jure Vogrinc & Samuel Livingstone & Giacomo Zanella, 2023. "Optimal design of the Barker proposal and other locally balanced Metropolis–Hastings algorithms," Biometrika, Biometrika Trust, vol. 110(3), pages 579-595.
    9. Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
    10. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    11. Mamatzakis, Emmanuel C. & Tsionas, Mike G., 2021. "Making inference of British household's happiness efficiency: A Bayesian latent model," European Journal of Operational Research, Elsevier, vol. 294(1), pages 312-326.
    12. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    13. Tengyuan Liang & Weijie J. Su, 2019. "Statistical inference for the population landscape via moment‐adjusted stochastic gradients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 431-456, April.
    14. Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
    15. Chris Sherlock & Anthony Lee, 2022. "Variance Bounding of Delayed-Acceptance Kernels," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2237-2260, September.
    16. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    17. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    18. Param Vir Singh & Nachiketa Sahoo & Tridas Mukhopadhyay, 2014. "How to Attract and Retain Readers in Enterprise Blogging?," Information Systems Research, INFORMS, vol. 25(1), pages 35-52, March.
    19. M Ludkin & C Sherlock, 2023. "Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm," Biometrika, Biometrika Trust, vol. 110(2), pages 301-318.
    20. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:2:p:496-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.