Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1013779208892
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jarner, Søren Fiig & Hansen, Ernst, 2000. "Geometric ergodicity of Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 341-361, February.
- O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 307-328, October.
- Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
- Breyer, L. A. & Roberts, G. O., 2000. "From metropolis to diffusions: Gibbs states and optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 90(2), pages 181-206, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dalalyan, Arnak S. & Karagulyan, Avetik, 2019.
"User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient,"
Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
- Arnak Dalalyan & Avetik Karagulyan, 2017. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Working Papers 2017-20, Center for Research in Economics and Statistics.
- Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
- Arnak S. Dalalyan, 2017.
"Theoretical guarantees for approximate sampling from smooth and log-concave densities,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
- Arnak S. Dalalyan, 2014. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Working Papers 2014-45, Center for Research in Economics and Statistics.
- Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
- Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
- Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
- Zanella, Giacomo & Bédard, Mylène & Kendall, Wilfrid S., 2017. "A Dirichlet form approach to MCMC optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4053-4082.
- G. O. Roberts & O. Stramer, 2002. "Langevin Diffusions and Metropolis-Hastings Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 4(4), pages 337-357, December.
- Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
- Yves F. Atchadé, 2006. "An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 235-254, June.
- Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
- Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
- Chris Sherlock & Anthony Lee, 2022. "Variance Bounding of Delayed-Acceptance Kernels," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2237-2260, September.
- Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017.
"Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
- Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," LSE Research Online Documents on Economics 80749, London School of Economics and Political Science, LSE Library.
- Peter Neal & Gareth Roberts, 2011. "Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 583-601, September.
- Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
- O. Stramer & R. L. Tweedie, 1999. "Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 283-306, October.
- Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
More about this item
Keywords
conditional simulation; generalized linear mixed model; geometric ergodicity; Langevin-Hastings algorithm; Markov chain Monte Carlo; random walk Metropolis algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:3:y:2001:i:3:d:10.1023_a:1013779208892. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.