IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v181y2021icp351-363.html
   My bibliography  Save this article

Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity

Author

Listed:
  • Belomestny, Denis
  • Iosipoi, Leonid

Abstract

Markov Chain Monte Carlo methods become increasingly popular in applied mathematics as a tool for numerical integration with respect to complex and high-dimensional distributions. However, application of MCMC methods to heavy-tailed distributions and distributions with analytically intractable densities turns out to be rather problematic. In this paper, we propose a novel approach towards the use of MCMC algorithms for distributions with analytically known Fourier transforms and, in particular, heavy-tailed distributions. The main idea of the proposed approach is to use MCMC methods in Fourier domain to sample from a density proportional to the absolute value of the underlying characteristic function. A subsequent application of the Parseval’s formula leads to an efficient algorithm for the computation of integrals with respect to the underlying density. We show that the resulting Markov chain in Fourier domain may be geometrically ergodic even in the case of heavy-tailed original distributions. We illustrate our approach by several numerical examples including multivariate elliptically contoured stable distributions.

Suggested Citation

  • Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
  • Handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:351-363
    DOI: 10.1016/j.matcom.2020.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jarner, Søren Fiig & Hansen, Ernst, 2000. "Geometric ergodicity of Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 341-361, February.
    2. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2010. "Analysis of Fourier Transform Valuation Formulas and Applications," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 211-240.
    3. John Nolan, 2013. "Multivariate elliptically contoured stable distributions: theory and estimation," Computational Statistics, Springer, vol. 28(5), pages 2067-2089, October.
    4. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    5. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    6. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    2. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    3. Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
    4. F. Antonelli & A. Ramponi & S. Scarlatti, 2016. "Random Time Forward-Starting Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-25, December.
    5. Abdou Kélani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market: A Risk Management Perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 209-238, March.
    6. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    7. Chunfa Wang, 2017. "Pricing European Options by Stable Fourier-Cosine Series Expansions," Papers 1701.00886, arXiv.org, revised Jan 2017.
    8. Kevin Kurt & Rudiger Frey, 2021. "Markov-Modulated Affine Processes," Papers 2106.16240, arXiv.org, revised Aug 2022.
    9. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    10. Maximilian Ga{ss} & Kathrin Glau & Maximilian Mair, 2015. "Magic points in finance: Empirical integration for parametric option pricing," Papers 1511.00884, arXiv.org, revised Nov 2016.
    11. Kyoung-Kuk Kim & Sojung Kim, 2016. "Simulation of Tempered Stable Lévy Bridges and Its Applications," Operations Research, INFORMS, vol. 64(2), pages 495-509, April.
    12. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    13. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
    14. Kurt, Kevin & Frey, Rüdiger, 2022. "Markov-modulated affine processes," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 391-422.
    15. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    16. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    17. Young Shin Kim, 2018. "First Passage Time for Tempered Stable Process and Its Application to Perpetual American Option and Barrier Option Pricing," Papers 1801.09362, arXiv.org.
    18. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    19. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    20. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:351-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.