Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2018.08.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Casse, Jérôme & Marckert, Jean-François, 2016. "Processes iterated ad libitum," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3353-3376.
- Azmoodeh, Ehsan & Sottinen, Tommi & Viitasaari, Lauri & Yazigi, Adil, 2014. "Necessary and sufficient conditions for Hölder continuity of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 230-235.
- Stoev, Stilian A. & Taqqu, Murad S., 2006. "How rich is the class of multifractional Brownian motions?," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 200-221, February.
- Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
- Dieter Sondermann, 2006. "Introduction to Stochastic Calculus for Finance," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-34837-5, October.
- Samorodnitsky, Gennady, 1991. "Probability tails of Gaussian extrema," Stochastic Processes and their Applications, Elsevier, vol. 38(1), pages 55-84, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
- Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
- Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
- Csosz Csongor & Erdos Alpar, 2021. "Application Of The Taylor Polynom In Stock Exchange Market Analysis," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 15-36, June.
- Tommi Sottinen & Lauri Viitasaari, 2018. "Parameter estimation for the Langevin equation with stationary-increment Gaussian noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 569-601, October.
- Abdul-Lateef Haji-Ali & Jonathan Spence & Aretha Teckentrup, 2021. "Adaptive Multilevel Monte Carlo for Probabilities," Papers 2107.09148, arXiv.org.
- Tomoyuki Ichiba & Guodong Pang & Murad S. Taqqu, 2022. "Path Properties of a Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 550-574, March.
- Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
- A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Gobet, Emmanuel & Menozzi, Stéphane, 2010. "Stopped diffusion processes: Boundary corrections and overshoot," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 130-162, February.
- Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
- Hideyuki Tanaka & Toshihiro Yamada, 2012. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method," Papers 1210.0670, arXiv.org, revised Nov 2013.
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
- Hjort, N.L. & Koning, A.J., 2001. "Constancy of distributions: nonparametric monitoring of probability distributions over time," Econometric Institute Research Papers EI 2001-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hiderah Kamal, 2020. "Approximation of Euler–Maruyama for one-dimensional stochastic differential equations involving the maximum process," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 33-47, March.
- Yuta Otsuki & Shotaro Yagishita, 2024. "Optimal reinsurance and investment via stochastic projected gradient method based on Malliavin calculus," Papers 2411.05417, arXiv.org.
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
- Koning, Alex J. & Protasov, Vladimir, 2003. "Tail behaviour of Gaussian processes with applications to the Brownian pillow," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 370-397, November.
- Frank Riedel, 2011.
"Finance Without Probabilistic Prior Assumptions,"
Papers
1107.1078, arXiv.org.
- Riedel, Frank, 2016. "Finance without probabilistic prior assumptions," Center for Mathematical Economics Working Papers 450, Center for Mathematical Economics, Bielefeld University.
- Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020.
"Spanning analysis of stock market anomalies under prospect stochastic dominance,"
Working Papers
unige:134101, University of Geneva, Geneva School of Economics and Management.
- Stelios Arvanitis & Olivier Scaillet & Nikolas Topaloglou, 2020. "Spanning analysis of stock market anomalies under Prospect Stochastic Dominance," Papers 2004.02670, arXiv.org.
- Stelios Arvanitis & O. Scaillet & Nikolas Topaloglou, 2020. "Spanning analysis of stock market anomalies under Prospect Stochastic Dominance," Swiss Finance Institute Research Paper Series 20-18, Swiss Finance Institute.
More about this item
Keywords
Composite stochastic process; Generalised Stieltjes integral; Fractional calculus; Riemann–Liouville integral; Fractional Sobolev space; Gagliardo–Slobodeckij seminorm; Fractional Sobolev–Slobodeckij space; Bounded p-variation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:8:p:2723-2757. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.