On pathwise Riemann–Stieltjes integrals
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2019.02.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
- Yaskov, Pavel, 2018. "Extensions of the sewing lemma with applications," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3940-3965.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hideyuki Tanaka & Toshihiro Yamada, 2012. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method," Papers 1210.0670, arXiv.org, revised Nov 2013.
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
- Yuta Otsuki & Shotaro Yagishita, 2024. "Optimal reinsurance and investment via stochastic projected gradient method based on Malliavin calculus," Papers 2411.05417, arXiv.org.
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
- Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
- Daphné Giorgi & Vincent Lemaire & Gilles Pagès, 2020. "Weak Error for Nested Multilevel Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1325-1348, September.
- Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
- Dereich, Steffen & Heidenreich, Felix, 2011. "A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1565-1587, July.
- Michael B. Giles & Kristian Debrabant & Andreas Ro{ss}ler, 2013. "Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation," Papers 1302.4676, arXiv.org, revised Jun 2019.
- Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
- Hideyuki Tanaka & Toshihiro Yamada, 2013. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method (Forthcoming in "International Journal of Theoretical and Applied Finance")," CARF F-Series CARF-F-333, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Dirk Becherer & Plamen Turkedjiev, 2014. "Multilevel approximation of backward stochastic differential equations," Papers 1412.3140, arXiv.org.
- Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
- Abdul-Lateef Haji-Ali & Jonathan Spence & Aretha Teckentrup, 2021. "Adaptive Multilevel Monte Carlo for Probabilities," Papers 2107.09148, arXiv.org.
- Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
- Ngo, Hoang-Long & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 102-112.
- Chen, Zhe & Leskelä, Lasse & Viitasaari, Lauri, 2019. "Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2723-2757.
- Hiderah Kamal, 2020. "Approximation of Euler–Maruyama for one-dimensional stochastic differential equations involving the maximum process," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 33-47, March.
- Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
- Laukkarinen, Eija, 2020. "Malliavin smoothness on the Lévy space with Hölder continuous or BV functionals," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4766-4792.
More about this item
Keywords
Riemann–Stieltjes integrals; Sewing lemma; Stochastic integrals;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:101-107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.