IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i11p3353-3376.html
   My bibliography  Save this article

Processes iterated ad libitum

Author

Listed:
  • Casse, Jérôme
  • Marckert, Jean-François

Abstract

Consider the nth iterated Brownian motion I(n)=Bn∘⋯∘B1. Curien and Konstantopoulos proved that for any distinct numbers ti≠0, (I(n)(t1),…,I(n)(tk)) converges in distribution to a limit I[k] independent of the ti’s, exchangeable, and gave some elements on the limit occupation measure of I(n). Here, we prove under some conditions, finite dimensional distributions of nth iterated two-sided stable processes converge, and the same holds the reflected Brownian motions. We give a description of the law of I[k], of the finite dimensional distributions of I(n), as well as those of the iterated reflected Brownian motion iterated ad libitum.

Suggested Citation

  • Casse, Jérôme & Marckert, Jean-François, 2016. "Processes iterated ad libitum," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3353-3376.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:11:p:3353-3376
    DOI: 10.1016/j.spa.2016.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertoin, Jean, 1996. "Iterated Brownian motion and stable() subordinator," Statistics & Probability Letters, Elsevier, vol. 27(2), pages 111-114, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhe & Leskelä, Lasse & Viitasaari, Lauri, 2019. "Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2723-2757.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yimin Xiao, 1998. "Local Times and Related Properties of Multidimensional Iterated Brownian Motion," Journal of Theoretical Probability, Springer, vol. 11(2), pages 383-408, April.
    2. Csáki, Endre & Csörgo, Miklós & Földes, Antónia & Révész, Pál, 1997. "On the occupation time of an iterated process having no local time," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 199-217, October.
    3. Nane, Erkan, 2009. "Laws of the iterated logarithm for a class of iterated processes," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1744-1751, August.
    4. Csáki, Endre & Csörgo, Miklós & Földes, Antónia & Révész, Pál, 2011. "On the local time of random walk on the 2-dimensional comb," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1290-1314, June.
    5. Endre Csáki & Antónia Földes, 2020. "Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$ Z 2," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2233-2257, December.
    6. Nicolas Curien & Takis Konstantopoulos, 2014. "Iterating Brownian Motions, Ad Libitum," Journal of Theoretical Probability, Springer, vol. 27(2), pages 433-448, June.
    7. Yueyun Hu, 1999. "Hausdorff and Packing Measures of the Level Sets of Iterated Brownian Motion," Journal of Theoretical Probability, Springer, vol. 12(2), pages 313-346, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:11:p:3353-3376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.