IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/591.html
   My bibliography  Save this paper

Tail behaviour of Gaussian processes with applications to the Brownian pillow

Author

Listed:
  • Koning, A.J.
  • Protassov, V.

Abstract

In this paper we investigate the tail behaviour of a random variable S which may be viewed as a functional T of a zero mean Gaussian process X, taking special interest in the situation where X obeys the structure which is typical for limiting processes ocurring in nonparametric testing of [multivariate] indepencency and [multivariate] constancy over time. The tail behaviour of S is described by means of a constant a and a random variable R which is defined on the same probability space as S. The constant a acts as an upper bound, and is relevant for the computation of the efficiency of test statistics converging in distribution to S. The random variable R acts as a lower bound, and is instrumental in deriving approximations for the upper percentage points of S by simulation.

Suggested Citation

  • Koning, A.J. & Protassov, V., 2001. "Tail behaviour of Gaussian processes with applications to the Brownian pillow," Econometric Institute Research Papers EI 2001-49, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:591
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/591/feweco20020115122231.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    2. Hjort, N.L. & Koning, A.J., 2001. "Constancy of distributions: nonparametric monitoring of probability distributions over time," Econometric Institute Research Papers EI 2001-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Samorodnitsky, Gennady, 1991. "Probability tails of Gaussian extrema," Stochastic Processes and their Applications, Elsevier, vol. 38(1), pages 55-84, June.
    4. Cotterill Derek S. & Csörgö Miklós, 1985. "On The Limiting Distribution Of And Critical Values For The Hoeffding, Blum, Kiefer, Rosenblatt Independence Criterion," Statistics & Risk Modeling, De Gruyter, vol. 3(1-2), pages 1-48, February.
    5. Eastwood, Brian J. & Eastwood, Vera R., 1992. "Percentiles for Cramér-von Mises functionals of Gaussian processes and some applications to Bayesian tests," Stochastic Processes and their Applications, Elsevier, vol. 42(2), pages 329-344, September.
    6. Kallenberg, Wilbert C. M. & Koning, Alex J., 1995. "On Wieand's theorem," Statistics & Probability Letters, Elsevier, vol. 25(2), pages 121-132, November.
    7. De Wet, T., 1980. "Cramér-von Mises tests for independence," Journal of Multivariate Analysis, Elsevier, vol. 10(1), pages 38-50, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hjort, N.L. & Koning, A.J., 2001. "Constancy of distributions: nonparametric monitoring of probability distributions over time," Econometric Institute Research Papers EI 2001-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Koning, A.J. & Hjort, N.L., 2002. "Constancy of distributions: asymptotic efficiency of certain nonparametric tests of constancy," Econometric Institute Research Papers EI 2002-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koning, Alex J. & Protasov, Vladimir, 2003. "Tail behaviour of Gaussian processes with applications to the Brownian pillow," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 370-397, November.
    2. Györfi, László & Walk, Harro, 2012. "Strongly consistent nonparametric tests of conditional independence," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1145-1150.
    3. Koning, A.J. & Hjort, N.L., 2002. "Constancy of distributions: asymptotic efficiency of certain nonparametric tests of constancy," Econometric Institute Research Papers EI 2002-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Pycke, Jean-Renaud, 2003. "Multivariate extensions of the Anderson-Darling process," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 387-399, July.
    5. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
    6. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    7. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
    8. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    9. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    10. Florencia Leonardi & Matías Lopez‐Rosenfeld & Daniela Rodriguez & Magno T. F. Severino & Mariela Sued, 2021. "Independent block identification in multivariate time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 19-33, January.
    11. Einmahl, J.H.J. & McKeague, I.W., 2002. "Empirical Likelihood based on Hypothesis Testing," Other publications TiSEM 402576fa-8c0e-45e2-a394-8, Tilburg University, School of Economics and Management.
    12. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Einmahl, J.H.J. & van Keilegom, I., 2004. "Goodness-of-fit Tests in Nonparametric Regression," Discussion Paper 2004-12, Tilburg University, Center for Economic Research.
    14. Withers, Christopher S. & Nadarajah, Saralees, 2013. "Bayesian efficiency," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1203-1212.
    15. Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.
    16. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    17. Koning, A.J., 1999. "Goodness of fit for the constancy of a classical statistical model over time," Econometric Institute Research Papers EI 9959-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Arvanitis, Stelios & Scaillet, Olivier & Topaloglou, Nikolas, 2020. "Spanning analysis of stock market anomalies under prospect stochastic dominance," Working Papers unige:134101, University of Geneva, Geneva School of Economics and Management.
    19. Genest, Christian & Quessy, Jean-François & Rémillard, Bruno, 2006. "Local efficiency of a Cramer-von Mises test of independence," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 274-294, January.
    20. repec:cte:wsrepe:3729 is not listed on IDEAS
    21. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2013. "On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 214-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.