IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v94y2014icp230-235.html
   My bibliography  Save this article

Necessary and sufficient conditions for Hölder continuity of Gaussian processes

Author

Listed:
  • Azmoodeh, Ehsan
  • Sottinen, Tommi
  • Viitasaari, Lauri
  • Yazigi, Adil

Abstract

The continuity of Gaussian processes is an extensively studied topic and it culminates in Talagrand’s notion of majorizing measures that gives complicated necessary and sufficient conditions. In this note we study the Hölder continuity of Gaussian processes. It turns out that necessary and sufficient conditions can be stated in a simple form that is a variant of the celebrated Kolmogorov–Čentsov condition.

Suggested Citation

  • Azmoodeh, Ehsan & Sottinen, Tommi & Viitasaari, Lauri & Yazigi, Adil, 2014. "Necessary and sufficient conditions for Hölder continuity of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 230-235.
  • Handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:230-235
    DOI: 10.1016/j.spl.2014.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214002776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pauliina Ilmonen & Soledad Torres & Lauri Viitasaari, 2020. "Oscillating Gaussian processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 571-593, October.
    2. Michele Giordano & Anton Yurchenko-Tytarenko, 2024. "Optimal control in linear-quadratic stochastic advertising models with memory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 275-298, June.
    3. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    4. Tommi Sottinen & Lauri Viitasaari, 2018. "Parameter estimation for the Langevin equation with stationary-increment Gaussian noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 569-601, October.
    5. Tomoyuki Ichiba & Guodong Pang & Murad S. Taqqu, 2022. "Path Properties of a Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 550-574, March.
    6. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
    7. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2023. "Power law in Sandwiched Volterra Volatility model," Papers 2311.01228, arXiv.org.
    8. Chen, Zhe & Leskelä, Lasse & Viitasaari, Lauri, 2019. "Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2723-2757.
    9. Krzysztof Bisewski & Krzysztof Dȩbicki & Tomasz Rolski, 2022. "Derivative of the expected supremum of fractional Brownian motion at $$H=1$$ H = 1," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 53-68, October.
    10. Nummi, Patrik & Viitasaari, Lauri, 2024. "Necessary and sufficient conditions for continuity of hypercontractive processes and fields," Statistics & Probability Letters, Elsevier, vol. 208(C).
    11. Maleki Almani, Hamidreza & Shokrollahi, Foad & Sottinen, Tommi, 2024. "Prediction of Gaussian Volterra processes with compound Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 208(C).
    12. Sottinen, Tommi & Viitasaari, Lauri, 2017. "Prediction law of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 155-166.
    13. Mohamed Omari, 2023. "An α-Order Fractional Brownian Motion with Hurst Index H ∈ (0,1) and α ∈ R + $\alpha \in \mathbbm {R}_{+}$," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 572-599, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:230-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.