IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02430430.html
   My bibliography  Save this paper

Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations

Author

Listed:
  • F Bourgey

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • S de Marco

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • Emmanuel Gobet

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • Alexandre Zhou

    (CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École des Ponts ParisTech)

Abstract

The Multilevel Monte-Carlo (MLMC) method developed by Giles [Gil08] has a natural application to the evaluation of nested expectation of the form E [g(E [f (X, Y)|X])], where f, g are functions and (X, Y) a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of Initial Margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotical optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal/dual algorithms for stochastic control problems.

Suggested Citation

  • F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
  • Handle: RePEc:hal:journl:hal-02430430
    DOI: 10.1515/mcma-2020-2062
    Note: View the original document on HAL open archive server: https://hal.science/hal-02430430
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02430430/document
    Download Restriction: no

    File URL: https://libkey.io/10.1515/mcma-2020-2062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
    2. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    3. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    4. Ivan Guo & Gregoire Loeper, 2018. "Pricing Bounds for Volatility Derivatives via Duality and Least Squares Monte Carlo," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 598-617, November.
    5. Michael B. Giles & Abdul-Lateef Haji-Ali, 2018. "Multilevel nested simulation for efficient risk estimation," Papers 1802.05016, arXiv.org, revised Feb 2019.
    6. K. Bujok & B. M. Hambly & C. Reisinger, 2015. "Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 579-604, September.
    7. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    8. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    9. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    10. repec:hal:wpaper:hal-01686952 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    2. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    2. Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
    3. Daphné Giorgi & Vincent Lemaire & Gilles Pagès, 2020. "Weak Error for Nested Multilevel Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1325-1348, September.
    4. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    5. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    6. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    7. St'ephane Cr'epey & Noufel Frikha & Azar Louzi, 2023. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Papers 2304.01207, arXiv.org, revised Jul 2024.
    8. Stéphane Crépey & Noufel Frikha & Azar Louzi, 2024. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04037328, HAL.
    9. Stéphane Crépey & Noufel Frikha & Azar Louzi, 2024. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Working Papers hal-04037328, HAL.
    10. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    11. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
    12. Devang Sinha & Siddhartha P. Chakrabarty, 2024. "Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application," Papers 2407.18504, arXiv.org.
    13. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Monte Carlo and its Applications in Financial Engineering," Papers 2209.14549, arXiv.org.
    14. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    15. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2018. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Working Papers hal-01710394, HAL.
    16. Goda, Takashi & Kitade, Wataru, 2023. "Constructing unbiased gradient estimators with finite variance for conditional stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 743-763.
    17. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    18. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2019. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Post-Print hal-01710394, HAL.
    19. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    20. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02430430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.