IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.0670.html
   My bibliography  Save this paper

Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method

Author

Listed:
  • Hideyuki Tanaka
  • Toshihiro Yamada

Abstract

Motivated by weak convergence results in the paper of Takahashi and Yoshida (2005), we show strong convergence for an accelerated Euler-Maruyama scheme applied to perturbed stochastic differential equations. The Milstein scheme with the same acceleration is also discussed as an extended result. The theoretical results can be applied to analyzing the multi-level Monte Carlo method originally developed by M.B. Giles. Several numerical experiments for the SABR stochastic volatility model are presented in order to confirm the efficiency of the schemes.

Suggested Citation

  • Hideyuki Tanaka & Toshihiro Yamada, 2012. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method," Papers 1210.0670, arXiv.org, revised Nov 2013.
  • Handle: RePEc:arx:papers:1210.0670
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.0670
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akihiko Takahashi & Nakahiro Yoshida, 2005. "Monte Carlo Simulation with Asymptotic Method," CIRJE F-Series CIRJE-F-335, CIRJE, Faculty of Economics, University of Tokyo.
    2. Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
    3. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    4. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akihiko Takahashi & Toshihiro Yamada, 2013. "A Weak Approximation with Asymptotic Expansion and Multidimensional Malliavin Weights," CIRJE F-Series CIRJE-F-909, CIRJE, Faculty of Economics, University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hideyuki Tanaka & Toshihiro Yamada, 2013. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method (Forthcoming in "International Journal of Theoretical and Applied Finance")," CARF F-Series CARF-F-333, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    3. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    4. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
    5. Daphné Giorgi & Vincent Lemaire & Gilles Pagès, 2020. "Weak Error for Nested Multilevel Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1325-1348, September.
    6. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    7. Dereich, Steffen & Heidenreich, Felix, 2011. "A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1565-1587, July.
    8. Michael B. Giles & Kristian Debrabant & Andreas Ro{ss}ler, 2013. "Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation," Papers 1302.4676, arXiv.org, revised Jun 2019.
    9. Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
    10. Dirk Becherer & Plamen Turkedjiev, 2014. "Multilevel approximation of backward stochastic differential equations," Papers 1412.3140, arXiv.org.
    11. Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
    12. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    13. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    14. Kohta Takehara & Masashi Toda & Akihiko Takahashi, 2010. "Application Of A High-Order Asymptotic Expansion Scheme To Long-Term Currency Options," CARF F-Series CARF-F-225, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Akihiko Takahashi & Toshihiro Yamada, 2013. "On Error Estimates for Asymptotic Expansions with Malliavin Weights -Application to Stochastic Volatility Model-," CARF F-Series CARF-F-324, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Mar 2014.
    16. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    17. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    18. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    19. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    20. Akihiko Takahashi & Kohta Takehara, 2007. "An Asymptotic Expansion Approach to Currency Options with a Market Model of Interest Rates under Stochastic Volatility Processes of Spot Exchange Rates (Revised in August 2007 and January 2009; subseq," CARF F-Series CARF-F-092, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.0670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.