IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i3d10.1007_s11203-017-9156-6.html
   My bibliography  Save this article

Parameter estimation for the Langevin equation with stationary-increment Gaussian noise

Author

Listed:
  • Tommi Sottinen

    (University of Vaasa)

  • Lauri Viitasaari

    (Aalto University School of Science, Helsinki)

Abstract

We study the Langevin equation with stationary-increment Gaussian noise. We show the strong consistency and the asymptotic normality with Berry–Esseen bound of the so-called second moment estimator of the mean reversion parameter. The conditions and results are stated in terms of the variance function of the noise. We consider both the case of continuous and discrete observations. As examples we consider fractional and bifractional Ornstein–Uhlenbeck processes. Finally, we discuss the maximum likelihood and the least squares estimators.

Suggested Citation

  • Tommi Sottinen & Lauri Viitasaari, 2018. "Parameter estimation for the Langevin equation with stationary-increment Gaussian noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 569-601, October.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:3:d:10.1007_s11203-017-9156-6
    DOI: 10.1007/s11203-017-9156-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-017-9156-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-017-9156-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sottinen, Tommi & Yazigi, Adil, 2014. "Generalized Gaussian bridges," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3084-3105.
    2. Sun, Xiaoxia & Guo, Feng, 2015. "On integration by parts formula and characterization of fractional Ornstein–Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 170-177.
    3. Yazigi, Adil, 2015. "Representation of self-similar Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 94-100.
    4. Russo, Francesco & Tudor, Ciprian A., 2006. "On bifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 830-856, May.
    5. Tommi Sottinen & Lauri Viitasaari, 2016. "Stochastic Analysis of Gaussian Processes via Fredholm Representation," International Journal of Stochastic Analysis, Hindawi, vol. 2016, pages 1-15, July.
    6. Tommi Sottinen & Ciprian Tudor, 2008. "Parameter estimation for stochastic equations with additive fractional Brownian sheet," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 221-236, October.
    7. Katsuto Tanaka, 2015. "Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 315-332, October.
    8. Azmoodeh, Ehsan & Sottinen, Tommi & Viitasaari, Lauri & Yazigi, Adil, 2014. "Necessary and sufficient conditions for Hölder continuity of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 230-235.
    9. Ehsan Azmoodeh & Lauri Viitasaari, 2015. "Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 205-227, October.
    10. Viitasaari, Lauri, 2016. "Representation of stationary and stationary increment processes via Langevin equation and self-similar processes," Statistics & Probability Letters, Elsevier, vol. 115(C), pages 45-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pauliina Ilmonen & Soledad Torres & Lauri Viitasaari, 2020. "Oscillating Gaussian processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 571-593, October.
    2. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2022. "Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 885-911, October.
    3. Marko Voutilainen & Lauri Viitasaari & Pauliina Ilmonen & Soledad Torres & Ciprian Tudor, 2022. "Vector‐valued generalized Ornstein–Uhlenbeck processes: Properties and parameter estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 992-1022, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marko Voutilainen & Lauri Viitasaari & Pauliina Ilmonen & Soledad Torres & Ciprian Tudor, 2022. "Vector‐valued generalized Ornstein–Uhlenbeck processes: Properties and parameter estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 992-1022, September.
    2. Tomoyuki Ichiba & Guodong Pang & Murad S. Taqqu, 2022. "Path Properties of a Generalized Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 550-574, March.
    3. Maleki Almani, Hamidreza & Shokrollahi, Foad & Sottinen, Tommi, 2024. "Prediction of Gaussian Volterra processes with compound Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 208(C).
    4. Sottinen, Tommi & Viitasaari, Lauri, 2017. "Prediction law of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 155-166.
    5. Pavel Kříž & Leszek Szała, 2020. "Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein–Uhlenbeck Processes," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    6. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    7. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    8. Mohamed Omari, 2023. "An α-Order Fractional Brownian Motion with Hurst Index H ∈ (0,1) and α ∈ R + $\alpha \in \mathbbm {R}_{+}$," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 572-599, February.
    9. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    10. Bertin, Karine & Torres, Soledad & Tudor, Ciprian A., 2011. "Drift parameter estimation in fractional diffusions driven by perturbed random walks," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 243-249, February.
    11. Tommi Sottinen & Lauri Viitasaari, 2019. "Prediction Law of Mixed Gaussian Volterra Processes," Papers 1904.09799, arXiv.org.
    12. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    13. Nummi, Patrik & Viitasaari, Lauri, 2024. "Necessary and sufficient conditions for continuity of hypercontractive processes and fields," Statistics & Probability Letters, Elsevier, vol. 208(C).
    14. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
    15. Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
    16. Rosanna Coviello & Cristina Di Girolami & Francesco Russo, 2011. "On stochastic calculus related to financial assets without semimartingales," Papers 1102.2050, arXiv.org.
    17. Michele Giordano & Anton Yurchenko-Tytarenko, 2024. "Optimal control in linear-quadratic stochastic advertising models with memory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 275-298, June.
    18. Slominski, Leszek & Ziemkiewicz, Bartosz, 2009. "On weak approximations of integrals with respect to fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 543-552, February.
    19. Harnett, Daniel & Nualart, David, 2018. "Central limit theorem for functionals of a generalized self-similar Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 404-425.
    20. Chen, Zhe & Leskelä, Lasse & Viitasaari, Lauri, 2019. "Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2723-2757.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:3:d:10.1007_s11203-017-9156-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.