A central limit theorem for stationary random fields
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2012.08.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paulauskas, Vygantas, 2010. "On Beveridge-Nelson decomposition and limit theorems for linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 621-639, March.
- El Machkouri, Mohamed, 2002. "Kahane-Khintchine inequalities and functional central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 102(2), pages 285-299, December.
- Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018.
"LASSO-Driven Inference in Time and Space,"
Papers
1806.05081, arXiv.org, revised May 2020.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
- Steland, Ansgar, 2024. "Flexible nonlinear inference and change-point testing of high-dimensional spectral density matrices," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Koch, Erwan & Dombry, Clément & Robert, Christian Y., 2019. "A central limit theorem for functions of stationary max-stable random fields on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3406-3430.
- Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
- Peligrad, Magda & Zhang, Na, 2018. "On the normal approximation for random fields via martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1333-1346.
- Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
- Andreas Hagemann, 2020. "Inference with a single treated cluster," Papers 2010.04076, arXiv.org.
- Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019.
"Inference of Break-Points in High-Dimensional Time Series,"
IRTG 1792 Discussion Papers
2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2020. "Inference of breakpoints in high-dimensional time series," IRTG 1792 Discussion Papers 2020-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Lin, Han-Mai & Merlevède, Florence, 2022. "On the weak invariance principle for ortho-martingale in Banach spaces. Application to stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 198-220.
- Klicnarová, Jana & Volný, Dalibor & Wang, Yizao, 2016. "Limit theorems for weighted Bernoulli random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1819-1838.
- repec:hum:wpaper:sfb649dp2017-026 is not listed on IDEAS
- Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
- Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
- Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
- Davydov, Youri & Tempelman, Arkady, 2024. "Randomized limit theorems for stationary ergodic random processes and fields," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
- Tempelman, Arkady, 2022. "Randomized multivariate Central Limit Theorems for ergodic homogeneous random fields," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 89-105.
- Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org, revised Feb 2023.
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2017. "Dynamic semiparametric factor model with a common break," SFB 649 Discussion Papers 2017-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Volný, Dalibor & Wang, Yizao, 2014. "An invariance principle for stationary random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4012-4029.
- Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Elsinger, Helmut, 2013. "Comment on: A non-parametric spatial independence test using symbolic entropy," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 838-840.
- Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
- Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
- Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
- Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018.
"Using generalized estimating equations to estimate nonlinear models with spatial data,"
Papers
1810.05855, arXiv.org.
- Lu, Cuicui & Wang, Weining & Wooldridge, Jeffrey M., 2020. "Using generalized estimating equations to estimate nonlinear models with spatial data," IRTG 1792 Discussion Papers 2020-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Lei, J., 2013. "Smoothed Spatial Maximum Score Estimation of Spatial Autoregressive Binary Choice Panel Models," Other publications TiSEM d63bf400-7ff2-4a1c-8067-1, Tilburg University, School of Economics and Management.
- Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2016.
"Robust Confidence Regions for Incomplete Models,"
Econometrica, Econometric Society, vol. 84, pages 1799-1838, September.
- Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2015. "Robust confidence regions for incomplete models," CeMMAP working papers CWP20/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2015. "Robust confidence regions for incomplete models," CeMMAP working papers 65/15, Institute for Fiscal Studies.
- Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2015. "Robust Confidence Regions for Incomplete Models," Boston University - Department of Economics - Working Papers Series wp2015-008, Boston University - Department of Economics.
- Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2015. "Robust confidence regions for incomplete models," CeMMAP working papers CWP65/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2015. "Robust confidence regions for incomplete models," CeMMAP working papers 20/15, Institute for Fiscal Studies.
- Gupta, Abhimanyu, 2018.
"Autoregressive spatial spectral estimates,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
- Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
- Xiu Xu & Weining Wang & Yongcheol Shin & Chaowen Zheng, 2024.
"Dynamic Network Quantile Regression Model,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 407-421, April.
- Xiu Xu & Weining Wang & Yongcheol Shin & Chaowen Zheng, 2021. "Dynamic Network Quantile Regression Model," Papers 2111.07633, arXiv.org.
- Michael P. Leung, 2021.
"Rate-Optimal Cluster-Randomized Designs for Spatial Interference,"
Papers
2111.04219, arXiv.org, revised Sep 2022.
- Leung, Michael P, 2022. "Rate-optimal cluster-randomized designs for spatial interference," Santa Cruz Department of Economics, Working Paper Series qt8t44s021, Department of Economics, UC Santa Cruz.
- Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021.
"Limit theorems for network dependent random variables,"
Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
- Denis Kojevnikov & Vadim Marmer & Kyungchul Song, 2019. "Limit Theorems for Network Dependent Random Variables," Papers 1903.01059, arXiv.org, revised Feb 2021.
- Yixiao Sun & Min Seong Kim, 2015.
"Asymptotic F-Test in a GMM Framework with Cross-Sectional Dependence,"
The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 210-233, March.
- Min Seong Kim & Yixiao Sun, 2012. "Asymptotic F Test in a GMM Framework with Cross Sectional Dependence," Working Papers 032, Toronto Metropolitan University, Department of Economics.
- Rabovič, Renata & Čížek, Pavel, 2023.
"Estimation of spatial sample selection models: A partial maximum likelihood approach,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 214-243.
- Rabovic, Renata & Cizek, Pavel, 2016. "Estimation of Spatial Sample Selection Models : A Partial Maximum Likelihood Approach," Other publications TiSEM 8a4b2e5d-6787-4685-8b9e-1, Tilburg University, School of Economics and Management.
- Rabovic, Renata & Cizek, Pavel, 2016. "Estimation of Spatial Sample Selection Models : A Partial Maximum Likelihood Approach," Discussion Paper 2016-013, Tilburg University, Center for Economic Research.
- Rabovic, R. & Cizek, P., 2020. "Estimation of Spatial Sample Selection Models: A Partial Maximum Likelihood Approach," Cambridge Working Papers in Economics 2012, Faculty of Economics, University of Cambridge.
- Xu, Xiu & Wang, Weining & Shin, Yongcheol, 2020. "Dynamic Spatial Network Quantile Autoregression," IRTG 1792 Discussion Papers 2020-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Pesaran, M. Hashem & Yang, Cynthia Fan, 2020.
"Econometric analysis of production networks with dominant units,"
Journal of Econometrics, Elsevier, vol. 219(2), pages 507-541.
- Pesaran, H. & Yang, Cynthia Fan, 2016. "Econometric Analysis of Production Networks with Dominant Units," Cambridge Working Papers in Economics 1678, Faculty of Economics, University of Cambridge.
- M. Hashem Pesaran & Cynthia Fan Yang, 2016. "Econometric Analysis of Production Networks with Dominant Units," CESifo Working Paper Series 6141, CESifo.
- Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
- Debarsy, Nicolas & Ertur, Cem, 2010.
"Testing for spatial autocorrelation in a fixed effects panel data model,"
Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
- Nicolas DEBARSY (CERPE De Namur) & Cem ERTUR, 2009. "Testing for Spatial Autocorrelation in a Fixed Effects Panel Data Model," LEO Working Papers / DR LEO 1546, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Nicolas Debarsy & Cem Ertur, 2010. "Testing for Spatial Autocorrelation in a Fixed Effects Panel Data Model," Post-Print halshs-00414133, HAL.
- Bera, Anil K. & Doğan, Osman & Taşpınar, Süleyman, 2018. "Simple tests for endogeneity of spatial weights matrices," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 130-142.
- Candelaria, Luis E. & Ura, Takuya, 2020. "Identification and Inference of Network Formation Games with Misclassified Links," The Warwick Economics Research Paper Series (TWERPS) 1258, University of Warwick, Department of Economics.
- Lee, Yoonseok & Wang, Yulong, 2023.
"Threshold regression with nonparametric sample splitting,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 816-842.
- Yoonseok Lee & Yulong Wang, 2019. "Threshold Regression with Nonparametric Sample Splitting," Papers 1905.13140, arXiv.org, revised Jan 2021.
More about this item
Keywords
Central limit theorem; Spatial processes; m-dependent random fields; Weak mixing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:1:p:1-14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.