IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2020019.html
   My bibliography  Save this paper

Inference of breakpoints in high-dimensional time series

Author

Listed:
  • Chen, Likai
  • Wang, Weining
  • Wu, Wei Biao

Abstract

For multiple change-points detection of high-dimensional time series, we provide asymptotic theory concerning the consistency and the asymptotic distribution of the breakpoint statistics and estimated break sizes. The theory backs up a simple two- step procedure for detecting and estimating multiple change-points. The proposed two-step procedure involves the maximum of a MOSUM (moving sum) type statistics in the rst step and a CUSUM (cumulative sum) re nement step on an aggregated time series in the second step. Thus, for a xed time-point, we can capture both the biggest break across di erent coordinates and aggregating simultaneous breaks over multiple coordinates. Extending the existing high-dimensional Gaussian approximation theorem to dependent data with jumps, the theory allows us to characterize the size and power of our multiple change-point test asymptotically. Moreover, we can make inferences on the breakpoints estimates when the break sizes are small. Our theoretical setup incorporates both weak temporal and strong or weak cross-sectional dependence and is suitable for heavy-tailed innovations. A robust long-run covariance matrix estimation is proposed, which can be of independent interest. An application on detecting structural changes of the U.S. unemployment rate is considered to illustrate the usefulness of our method.

Suggested Citation

  • Chen, Likai & Wang, Weining & Wu, Wei Biao, 2020. "Inference of breakpoints in high-dimensional time series," IRTG 1792 Discussion Papers 2020-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2020019
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/230825/1/irtg1792dp2020-019.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wei Biao Wu & Zhibiao Zhao, 2007. "Inference of trends in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 391-410, June.
    2. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    3. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    4. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    5. Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
    6. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    7. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    8. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    9. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    10. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    11. Stryhn, Henrik, 1996. "The location of the maximum of asymmetric two-sided Brownian motion with triangular drift," Statistics & Probability Letters, Elsevier, vol. 29(3), pages 279-284, September.
    12. Tengyao Wang & Richard J. Samworth, 2018. "High dimensional change point estimation via sparse projection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 57-83, January.
    13. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    14. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    15. Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
    16. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2017. "Dynamic semiparametric factor model with a common break," SFB 649 Discussion Papers 2017-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weining & Yu, Lining & Wang, Bingling, 2020. "Tail Event Driven Factor Augmented Dynamic Model," IRTG 1792 Discussion Papers 2020-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Wang, Weining & Wooldridge, Jeffrey M. & Xu, Mengshan, 2020. "Improved Estimation of Dynamic Models of Conditional Means and Variances," IRTG 1792 Discussion Papers 2020-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    2. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    3. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    4. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    6. Otilia Boldea & Bettina Drepper & Zhuojiong Gan, 2020. "Change point estimation in panel data with time‐varying individual effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 712-727, September.
    7. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
    8. Hajra Siddiqa & Sajid Ali & Ismail Shah, 2021. "Most recent changepoint detection in censored panel data," Computational Statistics, Springer, vol. 36(1), pages 515-540, March.
    9. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    10. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    11. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    12. V. Brault & C. Lévy-Leduc & A. Mathieu & A. Jullien, 2018. "Change-Point Estimation in the Multivariate Model Taking into Account the Dependence: Application to the Vegetative Development of Oilseed Rape," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 374-389, September.
    13. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2017. "Dynamic semiparametric factor model with a common break," SFB 649 Discussion Papers 2017-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    15. Zifeng Zhao & Feiyu Jiang & Xiaofeng Shao, 2022. "Segmenting time series via self‐normalisation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1699-1725, November.
    16. Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
    17. Shu, Lei & Chen, Yu & Zhang, Weiping & Wang, Xueqin, 2022. "Spatial rank-based high-dimensional change point detection via random integration," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. repec:hum:wpaper:sfb649dp2017-026 is not listed on IDEAS
    19. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
    20. Agiwal Varun & Kumar Jitendra & Shangodoyin Dahud Kehinde, 2018. "A Bayesian Inference Of Multiple Structural Breaks In Mean And Error Variance In Panelar (1) Model," Statistics in Transition New Series, Statistics Poland, vol. 19(1), pages 7-23, March.
    21. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.

    More about this item

    Keywords

    multiple change points detection; temporal and cross-sectional dependence; Gaussian approximation; inference of break locations;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2020019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.