Randomized multivariate Central Limit Theorems for ergodic homogeneous random fields
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2021.10.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peligrad, Magda & Zhang, Na, 2018. "On the normal approximation for random fields via martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1333-1346.
- Volný, Dalibor & Wang, Yizao, 2014. "An invariance principle for stationary random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4012-4029.
- El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Na Zhang & Lucas Reding & Magda Peligrad, 2020. "On the Quenched Central Limit Theorem for Stationary Random Fields Under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2351-2379, December.
- Magda Peligrad & Dalibor Volný, 2020. "Quenched Invariance Principles for Orthomartingale-Like Sequences," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1238-1265, September.
- Klicnarová, Jana & Volný, Dalibor & Wang, Yizao, 2016. "Limit theorems for weighted Bernoulli random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1819-1838.
- Peligrad, Magda & Zhang, Na, 2018. "On the normal approximation for random fields via martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1333-1346.
- Lin, Han-Mai & Merlevède, Florence, 2022. "On the weak invariance principle for ortho-martingale in Banach spaces. Application to stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 198-220.
- Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019.
"Inference of Break-Points in High-Dimensional Time Series,"
IRTG 1792 Discussion Papers
2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2020. "Inference of breakpoints in high-dimensional time series," IRTG 1792 Discussion Papers 2020-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
- Michael C. Tseng, 2019. "A 2-Dimensional Functional Central Limit Theorem for Non-stationary Dependent Random Fields," Papers 1910.02577, arXiv.org.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018.
"LASSO-driven inference in time and space,"
CeMMAP working papers
CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2017. "Dynamic semiparametric factor model with a common break," SFB 649 Discussion Papers 2017-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
- repec:hum:wpaper:sfb649dp2017-026 is not listed on IDEAS
- Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
- Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
- Guy Cohen & Jean-Pierre Conze, 2017. "CLT for Random Walks of Commuting Endomorphisms on Compact Abelian Groups," Journal of Theoretical Probability, Springer, vol. 30(1), pages 143-195, March.
- Volný, Dalibor, 2019. "On limit theorems for fields of martingale differences," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 841-859.
- Steland, Ansgar, 2024. "Flexible nonlinear inference and change-point testing of high-dimensional spectral density matrices," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Koch, Erwan & Dombry, Clément & Robert, Christian Y., 2019. "A central limit theorem for functions of stationary max-stable random fields on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3406-3430.
- Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
More about this item
Keywords
Central Limit Theorem; Pointwise Ergodic Theorem; Stationary random process; Homogeneous random field;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:143:y:2022:i:c:p:89-105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.