IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v199y2024ics0047259x2300091x.html
   My bibliography  Save this article

Flexible nonlinear inference and change-point testing of high-dimensional spectral density matrices

Author

Listed:
  • Steland, Ansgar

Abstract

This paper studies a flexible approach to analyze high-dimensional nonlinear time series of unconstrained dimension based on linear statistics calculated from spectral average statistics of bilinear forms and nonlinear transformations of lag-window (i.e. band-regularized) spectral density matrix estimators. That class of statistics includes, among others, smoothed periodograms, nonlinear statistics such as coherency, long-run-variance estimators and contrast statistics related to factorial effects as special cases. Especially, we introduce the class of nonlinear spectral averages of the spectral density matrix. Having in mind big data settings, we study a sampling design which includes a sparse sampling scheme. Gaussian approximations with optimal rate are derived for nonlinear time series of growing dimension for these frequency domain statistics and the underlying lag-window (cross-) spectral estimator under non-stationarity. For change-testing (self-standardized) CUSUM statistics are examined. Further, a specific wild bootstrap procedure is proposed to estimate critical values. Simulation studies and an application to SP500 financial returns are provided in a supplement to this paper.

Suggested Citation

  • Steland, Ansgar, 2024. "Flexible nonlinear inference and change-point testing of high-dimensional spectral density matrices," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x2300091x
    DOI: 10.1016/j.jmva.2023.105245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X2300091X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
    2. Wu, Wei Biao & Zaffaroni, Paolo, 2018. "Asymptotic Theory For Spectral Density Estimates Of General Multivariate Time Series," Econometric Theory, Cambridge University Press, vol. 34(1), pages 1-22, February.
    3. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    4. Liu, Weidong & Lin, Zhengyan, 2009. "Strong approximation for a class of stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 249-280, January.
    5. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    6. Liu, Weidong & Wu, Wei Biao, 2010. "Asymptotics Of Spectral Density Estimates," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1218-1245, August.
    7. Shao, Xiaofeng, 2010. "The Dependent Wild Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 218-235.
    8. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    9. Monika Bours & Ansgar Steland, 2021. "Large‐sample approximations and change testing for high‐dimensional covariance matrices of multivariate linear time series and factor models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 610-654, June.
    10. Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
    11. Steland, Ansgar & von Sachs, Rainer, 2017. "Large-Sample Approximations for Variance-Covariance Matrices of High-Dimensional Time Series," LIDAM Reprints ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    2. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2017. "Dynamic semiparametric factor model with a common break," SFB 649 Discussion Papers 2017-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. repec:hum:wpaper:sfb649dp2017-026 is not listed on IDEAS
    4. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Christis Katsouris, 2023. "Break-Point Date Estimation for Nonstationary Autoregressive and Predictive Regression Models," Papers 2308.13915, arXiv.org.
    6. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    7. Ji-Eun Choi & Dong Wan Shin, 2021. "A self-normalization break test for correlation matrix," Statistical Papers, Springer, vol. 62(5), pages 2333-2353, October.
    8. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    9. Loubaton, Philippe & Rosuel, Alexis & Vallet, Pascal, 2023. "On the asymptotic distribution of the maximum sample spectral coherence of Gaussian time series in the high dimensional regime," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    10. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    11. Michal Pešta & Martin Wendler, 2020. "Nuisance-parameter-free changepoint detection in non-stationary series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 379-408, June.
    12. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    13. Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    14. Monika Bours & Ansgar Steland, 2021. "Large‐sample approximations and change testing for high‐dimensional covariance matrices of multivariate linear time series and factor models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 610-654, June.
    15. Steland, Ansgar & von Sachs, Rainer, 2018. "Asymptotics for high-dimensional covariance matrices and quadratic forms with applications to the trace functional and shrinkage," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2816-2855.
    16. Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    17. Zifeng Zhao & Feiyu Jiang & Xiaofeng Shao, 2022. "Segmenting time series via self‐normalisation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1699-1725, November.
    18. Horváth, Lajos & Rice, Gregory & Whipple, Stephen, 2016. "Adaptive bandwidth selection in the long run covariance estimator of functional time series," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 676-693.
    19. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    20. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    21. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x2300091x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.