IDEAS home Printed from https://ideas.repec.org/p/rye/wpaper/wp032.html
   My bibliography  Save this paper

Asymptotic F Test in a GMM Framework with Cross Sectional Dependence

Author

Listed:
  • Min Seong Kim

    (Department of Economics, Ryerson University, Toronto, Canada)

  • Yixiao Sun

    (Department of Economics, UC San Diego)

Abstract

The paper develops an asymptotically valid F test that is robust to spatial autocorrelation in a GMM framework. The test is based on the class of series covariance matrix estimators and ?fixed-smoothing asymptotics. The fi?xed-smoothing asymptotics and F approximation are established under mild sufficient conditions for a central limit theorem. These conditions can accommodate a wide range of spatial processes. This is in contrast with the standard arguments, which often impose very restrictive assumptions so that a functional central limit theorem holds. The proposed F test is very easy to implement, as critical values are from a standard F distribution. To a great extent, the asymptotic F test achieves triple robustness: it is asymptotically valid regardless of the spatial autocorrelation, the sampling region, and the limiting behavior of the smoothing parameter. Simulation shows that the F test is more accurate in size than the conventional chi-square tests, and it has the same size accuracy and power property as nonstandard tests that require computationally intensive simulation or bootstrap.

Suggested Citation

  • Min Seong Kim & Yixiao Sun, 2012. "Asymptotic F Test in a GMM Framework with Cross Sectional Dependence," Working Papers 032, Toronto Metropolitan University, Department of Economics.
  • Handle: RePEc:rye:wpaper:wp032
    as

    Download full text from publisher

    File URL: https://www.arts.ryerson.ca/economics/repec/pdfs/wp032.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.
    2. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    3. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    4. Sun, Yixiao, 2011. "Robust trend inference with series variance estimator and testing-optimal smoothing parameter," Journal of Econometrics, Elsevier, vol. 164(2), pages 345-366, October.
    5. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    6. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.
    2. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    3. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    4. Liu, Cheng & Sun, Yixiao, 2019. "A simple and trustworthy asymptotic t test in difference-in-differences regressions," Journal of Econometrics, Elsevier, vol. 210(2), pages 327-362.
    5. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    6. Hwang, Jungbin & Sun, Yixiao, 2018. "SIMPLE, ROBUST, AND ACCURATE F AND t TESTS IN COINTEGRATED SYSTEMS," Econometric Theory, Cambridge University Press, vol. 34(5), pages 949-984, October.
    7. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    8. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    9. Sun, Yixiao, 2013. "Fixed-smoothing Asymptotics in a Two-step GMM Framework," University of California at San Diego, Economics Working Paper Series qt64x4z265, Department of Economics, UC San Diego.
    10. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    2. Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021. "Limit theorems for network dependent random variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
    3. Rabovič, Renata & Čížek, Pavel, 2023. "Estimation of spatial sample selection models: A partial maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 232(1), pages 214-243.
    4. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    5. Ulrich K. Müller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Working Papers 2021-61, Princeton University. Economics Department..
    6. J. Hidalgo & M. Schafgans, 2020. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Papers 2006.14409, arXiv.org.
    7. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    8. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    9. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.
    10. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," LSE Research Online Documents on Economics 107426, London School of Economics and Political Science, LSE Library.
    11. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.
    12. Pakel, Cavit, 2019. "Bias reduction in nonlinear and dynamic panels in the presence of cross-section dependence," Journal of Econometrics, Elsevier, vol. 213(2), pages 459-492.
    13. Cuicui Lu & Weining Wang & Jeffrey M. Wooldridge, 2018. "Using generalized estimating equations to estimate nonlinear models with spatial data," Papers 1810.05855, arXiv.org.
    14. Jeong, Hanbat & Lee, Lung-fei, 2024. "Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables," Journal of Econometrics, Elsevier, vol. 242(1).
    15. Mullally, Conner, 2011. "Development in the Midst of Drought: Evaluating an Agricultural Extension and Credit Program in Nicaragua," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103799, Agricultural and Applied Economics Association.
    16. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    17. Zhenhao Gong & Min Seong Kim, 2024. "Improved inference for interactive fixed effects model under cross-sectional dependence," Empirical Economics, Springer, vol. 67(2), pages 727-760, August.
    18. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.
    19. repec:asg:wpaper:1013 is not listed on IDEAS
    20. Robinson, Peter M. & Thawornkaiwong, Supachoke, 2012. "Statistical inference on regression with spatial dependence," Journal of Econometrics, Elsevier, vol. 167(2), pages 521-542.
    21. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.

    More about this item

    Keywords

    F distribution; Fixed-smoothing asymptotics; Heteroskedasticity and Autocorrelation Robust; Robust Standard Error; Series Method; Spatial Analysis; Spatial Autocorrelation.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rye:wpaper:wp032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doosoo Kim (email available below). General contact details of provider: https://edirc.repec.org/data/deryeca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.