IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v123y2014icp201-213.html
   My bibliography  Save this article

On the asymptotic normality of kernel density estimators for causal linear random fields

Author

Listed:
  • Wang, Yizao
  • Woodroofe, Michael

Abstract

We establish sufficient conditions for the asymptotic normality of kernel density estimators applied to causal linear random fields, by m-dependent approximation. Our conditions on the coefficients of linear random fields are weaker than the known results, although our assumption on the bandwidth is not minimal. We also establish a convergence rate of Berry–Esseen’s type.

Suggested Citation

  • Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
  • Handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:201-213
    DOI: 10.1016/j.jmva.2013.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13002005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    2. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    3. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    4. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    5. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    6. Marc Hallin & Zudi Lu & Lanh T. Tran, 2001. "Density estimation for spatial linear processes," ULB Institutional Repository 2013/2109, ULB -- Universite Libre de Bruxelles.
    7. Bosq, Denis & Merlevède, Florence & Peligrad, Magda, 1999. "Asymptotic Normality for Density Kernel Estimators in Discrete and Continuous Time," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 78-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.
    2. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    3. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    4. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    5. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
    6. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    7. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
    8. Tsung-Lin Cheng & Hwai-Chung Ho & Xuewen Lu, 2008. "A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2," Journal of Theoretical Probability, Springer, vol. 21(2), pages 267-286, June.
    9. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    10. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    11. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
    12. Guillou, Armelle & Merlevède, Florence, 2001. "Estimation of the Asymptotic Variance of Kernel Density Estimators for Continuous Time Processes," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 114-137, October.
    13. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    14. Tang Qingguo & Chen Wenyu, 2022. "Estimation for partially linear additive regression with spatial data," Statistical Papers, Springer, vol. 63(6), pages 2041-2063, December.
    15. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M‐estimation in non‐parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    16. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.
    17. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    18. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    19. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    20. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:201-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.