IDEAS home Printed from https://ideas.repec.org/p/esx/essedp/23825.html
   My bibliography  Save this paper

Autoregressive Spatial Spectral Estimates

Author

Listed:
  • Gupta, A

Abstract

Autoregressive spectral density estimation for stationary random fields on a regular spatial lattice has many advantages relative to kernel based methods. It provides a guaranteed positive-definite estimate even when suitable edge-effect correction is employed, is simple to compute using least squares and necessitates no choice of kernel. We truncate a true half-plane infinite autoregressive representation to estimate the spectral density. The truncation length is allowed to diverge in all dimensions in order to avoid the potential bias which would accrue due to truncation at a fixed lag-length. Consistency and strong consistency of the proposed estimator, both uniform in frequencies, are established. Under suitable conditions the asymptotic distribution of the estimate is shown to be zero-mean normal and independent at fixed distinct frequencies, mirroring the behaviour for time series. A small Monte Carlo experiment examines finite sample performance. We illustrate the technique by applying it to Los Angeles house price data and a novel analysis of voter turnout data in a US presidential election. Technically the key to the results is the covariance structure of stationary random fields defined on regularly spaced lattices. We study this in detail and show the covariance matrix to satisfy a generalization of the Toeplitz property familiar from time series analysis.

Suggested Citation

  • Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 23825, University of Essex, Department of Economics.
  • Handle: RePEc:esx:essedp:23825
    as

    Download full text from publisher

    File URL: https://repository.essex.ac.uk/23825/
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Sain, Stephan R. & Cressie, Noel, 2007. "A spatial model for multivariate lattice data," Journal of Econometrics, Elsevier, vol. 140(1), pages 226-259, September.
    3. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    4. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    5. Felix Abramovich & Tal Lahav, 2015. "Sparse additive regression on a regular lattice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 443-459, March.
    6. Hidalgo, Javier, 2009. "Goodness of fit for lattice processes," Journal of Econometrics, Elsevier, vol. 151(2), pages 113-128, August.
    7. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    8. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    9. Conley, Timothy G. & Molinari, Francesca, 2007. "Spatial correlation robust inference with errors in location or distance," Journal of Econometrics, Elsevier, vol. 140(1), pages 76-96, September.
    10. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    11. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    12. Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
    13. Fuentes, Montserrat, 2007. "Approximate Likelihood for Large Irregularly Spaced Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 321-331, March.
    14. Hirotugu Akaike, 1969. "Power spectrum estimation through autoregressive model fitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 407-419, December.
    15. Jenish, Nazgul, 2016. "Spatial Semiparametric Model With Endogenous Regressors," Econometric Theory, Cambridge University Press, vol. 32(3), pages 714-739, June.
    16. Robinson, P.M. & Vidal Sanz, J., 2006. "Modified Whittle estimation of multilateral models on a lattice," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1090-1120, May.
    17. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    18. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.
    19. Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Conley, Timothy G. & Topa, Giorgio, 2007. "Estimating dynamic local interactions models," Journal of Econometrics, Elsevier, vol. 140(1), pages 282-303, September.
    21. Kelley Pace, R. & Barry, Ronald, 1997. "Sparse spatial autoregressions," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 291-297, May.
    22. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    23. Giorgio Topa, 2001. "Social Interactions, Local Spillovers and Unemployment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 261-295.
    24. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    25. Robinson, Peter M. & Thawornkaiwong, Supachoke, 2012. "Statistical inference on regression with spatial dependence," Journal of Econometrics, Elsevier, vol. 167(2), pages 521-542.
    26. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    27. Roknossadati, S.M. & Zarepour, M., 2010. "M-Estimation For A Spatial Unilateral Autoregressive Model With Infinite Variance Innovations," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1663-1682, December.
    28. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    29. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    30. Jose Vidal-Sanz, 2009. "Automatic spectral density estimation for random fields on a lattice via bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 96-114, May.
    31. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B. & Vogelsang, Timothy J., 2016. "FIXED-b ASYMPTOTICS FOR SPATIALLY DEPENDENT ROBUST NONPARAMETRIC COVARIANCE MATRIX ESTIMATORS," Econometric Theory, Cambridge University Press, vol. 32(1), pages 154-186, February.
    32. Robinson, Peter, 2008. "Correlation testing in time series, spatial and cross-sectional data," LSE Research Online Documents on Economics 25470, London School of Economics and Political Science, LSE Library.
    33. Yasumasa Matsuda & Yoshihiro Yajima, 2009. "Fourier analysis of irregularly spaced data on Rd," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 191-217, January.
    34. Robinson, P.M., 2008. "Correlation testing in time series, spatial and cross-sectional data," Journal of Econometrics, Elsevier, vol. 147(1), pages 5-16, November.
    35. Bronars, Stephen G. & Jansen, Dennis W., 1987. "The geographic distribution of unemployment rates in the U.S. : A spatial-time series analysis," Journal of Econometrics, Elsevier, vol. 36(3), pages 251-279, November.
    36. Robinson, P. M., 2005. "Robust covariance matrix estimation : 'HAC' estimates with long memory/antipersistence correction," LSE Research Online Documents on Economics 323, London School of Economics and Political Science, LSE Library.
    37. Korezlioglu, Hayri & Loubaton, Philippe, 1986. "Spectral factorization of wide sense stationary processes on 2," Journal of Multivariate Analysis, Elsevier, vol. 19(1), pages 24-47, June.
    38. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    39. Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 171-180, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhimanyu Gupta & Javier Hidalgo, 2020. "Nonparametric prediction with spatial data," Papers 2008.04269, arXiv.org, revised Nov 2021.
    2. Jentsch, Carsten & Meyer, Marco, 2021. "On the validity of Akaike’s identity for random fields," Journal of Econometrics, Elsevier, vol. 222(1), pages 676-687.
    3. Chen, Kun & Chan, Ngai Hang & Yau, Chun Yip & Hu, Jie, 2023. "Penalized Whittle likelihood for spatial data," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    4. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhimanyu Gupta & Javier Hidalgo, 2020. "Nonparametric prediction with spatial data," Papers 2008.04269, arXiv.org, revised Nov 2021.
    2. Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 14458, University of Essex, Department of Economics.
    3. J. Hidalgo & M. Schafgans, 2020. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Papers 2006.14409, arXiv.org.
    4. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    5. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    6. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," LSE Research Online Documents on Economics 107426, London School of Economics and Political Science, LSE Library.
    7. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    8. Timothy G. Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2023. "Bootstrap inference under cross‐sectional dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 511-569, May.
    9. Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021. "Limit theorems for network dependent random variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
    10. Ulrich K. Müller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Working Papers 2021-61, Princeton University. Economics Department..
    11. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," LSE Research Online Documents on Economics 68839, London School of Economics and Political Science, LSE Library.
    12. Javier Hidalgo & Marcia M Schafgans, 2015. "Inference and Testing Breaks in Large Dynamic Panels with Strong Cross Sectional Dependence," STICERD - Econometrics Paper Series /2015/583, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Ulrich K. Muller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Papers 2102.09353, arXiv.org.
    14. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.
    15. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    16. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    17. Javier Hidalgo & Marcia M Schafgans, 2017. "Inference Without Smoothing for Large Panels with Cross- Sectional and Temporal Dependence," STICERD - Econometrics Paper Series 597, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    18. Lee, Jungyoon & Robinson, Peter M., 2013. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 58188, London School of Economics and Political Science, LSE Library.
    19. Abhimanyu Gupta & Xi Qu, 2021. "Consistent specification testing under spatial dependence," Papers 2101.10255, arXiv.org, revised Aug 2022.
    20. Sun, Yu & Yan, Karen X., 2019. "Inference on Difference-in-Differences average treatment effects: A fixed-b approach," Journal of Econometrics, Elsevier, vol. 211(2), pages 560-588.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esx:essedp:23825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Essex Economics Web Manager (email available below). General contact details of provider: https://edirc.repec.org/data/edessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.