An invariance principle for stationary random fields under Hannan’s condition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2014.07.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Volný, Dalibor, 1993. "Approximating martingales and the central limit theorem for strictly stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 44(1), pages 41-74, January.
- Poghosyan, S. & Roelly, S., 1998. "Invariance principle for martingale-difference random fields," Statistics & Probability Letters, Elsevier, vol. 38(3), pages 235-245, June.
- El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
- Bradley, Richard C., 1989. "A caution on mixing conditions for random fields," Statistics & Probability Letters, Elsevier, vol. 8(5), pages 489-491, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lin, Han-Mai & Merlevède, Florence, 2022. "On the weak invariance principle for ortho-martingale in Banach spaces. Application to stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 198-220.
- Klicnarová, Jana & Volný, Dalibor & Wang, Yizao, 2016. "Limit theorems for weighted Bernoulli random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1819-1838.
- Na Zhang & Lucas Reding & Magda Peligrad, 2020. "On the Quenched Central Limit Theorem for Stationary Random Fields Under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2351-2379, December.
- Tempelman, Arkady, 2022. "Randomized multivariate Central Limit Theorems for ergodic homogeneous random fields," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 89-105.
- Guy Cohen & Jean-Pierre Conze, 2017. "CLT for Random Walks of Commuting Endomorphisms on Compact Abelian Groups," Journal of Theoretical Probability, Springer, vol. 30(1), pages 143-195, March.
- Peligrad, Magda & Zhang, Na, 2018. "On the normal approximation for random fields via martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1333-1346.
- Volný, Dalibor, 2019. "On limit theorems for fields of martingale differences," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 841-859.
- Michael C. Tseng, 2019. "A 2-Dimensional Functional Central Limit Theorem for Non-stationary Dependent Random Fields," Papers 1910.02577, arXiv.org.
- Davydov, Youri & Tempelman, Arkady, 2024. "Randomized limit theorems for stationary ergodic random processes and fields," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
- Magda Peligrad & Dalibor Volný, 2020. "Quenched Invariance Principles for Orthomartingale-Like Sequences," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1238-1265, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Klicnarová, Jana & Volný, Dalibor & Wang, Yizao, 2016. "Limit theorems for weighted Bernoulli random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1819-1838.
- Richard C. Bradley, 2001. "A Stationary Rho-Mixing Markov Chain Which Is Not “Interlaced” Rho-Mixing," Journal of Theoretical Probability, Springer, vol. 14(3), pages 717-727, July.
- Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
- Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
- Peligrad, Magda & Zhang, Na, 2018. "On the normal approximation for random fields via martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1333-1346.
- Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
- Peligrad, Magda, 2020. "A new CLT for additive functionals of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5695-5708.
- Daniel Nordman, 2008. "An empirical likelihood method for spatial regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 351-363, November.
- Davydov, Youri & Tempelman, Arkady, 2024. "Randomized limit theorems for stationary ergodic random processes and fields," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
- Zhou, Xing-cai & Lin, Jin-guan, 2012. "A wavelet estimator in a nonparametric regression model with repeated measurements under martingale difference error’s structure," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1914-1922.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018.
"LASSO-driven inference in time and space,"
CeMMAP working papers
CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
- Dalibor Volný, 2010. "Martingale Approximation and Optimality of Some Conditions for the Central Limit Theorem," Journal of Theoretical Probability, Springer, vol. 23(3), pages 888-903, September.
- Oka, Tatsushi & Qu, Zhongjun, 2011.
"Estimating structural changes in regression quantiles,"
Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
- Zhongjun Qu & Tatsushi Oka, 2010. "Estimating structural changes in regression quantiles," Boston University - Department of Economics - Working Papers Series WP2010-052, Boston University - Department of Economics.
- Steland, Ansgar, 2024. "Flexible nonlinear inference and change-point testing of high-dimensional spectral density matrices," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019.
"Inference of Break-Points in High-Dimensional Time Series,"
IRTG 1792 Discussion Papers
2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2020. "Inference of breakpoints in high-dimensional time series," IRTG 1792 Discussion Papers 2020-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
- repec:hum:wpaper:sfb649dp2017-026 is not listed on IDEAS
- S. Lahiri & Kanchan Mukherjee, 2004. "Asymptotic distributions of M-estimators in a spatial regression model under some fixed and stochastic spatial sampling designs," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 225-250, June.
- Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
- Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
- Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
More about this item
Keywords
Invariance principle; Brownian sheet; Random field; Orthomartingale; Hannan’s condition; Weak dependence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:12:p:4012-4029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.