IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i10p1929-1949.html
   My bibliography  Save this article

Stochastic flows and Bismut formulas for stochastic Hamiltonian systems

Author

Listed:
  • Zhang, Xicheng

Abstract

We first consider the stochastic differential equations (SDE) without global Lipschitz conditions, and give sufficient conditions for the SDEs to be strictly conservative. In particular, a criteria for stochastic flows of diffeomorphisms defined by SDEs with non-global Lipschitz coefficients is obtained. We also use Zvonkin's transformation to derive a stochastic flow of C1-diffeomorphisms for non-degenerate SDEs with Hölder continuous drifts. Next, we prove a Bismut type formula for certain degenerate SDEs. Lastly, we apply our results to stochastic Hamiltonian systems, which in particular covers the following stochastic nonlinear oscillator equation where has a bounded first order derivative, and is a one dimensional Brownian white noise.

Suggested Citation

  • Zhang, Xicheng, 2010. "Stochastic flows and Bismut formulas for stochastic Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1929-1949, September.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:1929-1949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00147-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmona, Philippe, 2007. "Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1076-1092, August.
    2. Zhang, Xicheng, 2005. "Homeomorphic flows for multi-dimensional SDEs with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 435-448, March.
    3. Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uda, Kenneth, 2021. "Averaging principle for stochastic differential equations in the random periodic regime," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 1-36.
    2. Xu, Jie & Wen, Jiaping & Mu, Jianyong & Liu, Jicheng, 2019. "Stochastic flows of SDEs with non-Lipschitz coefficients and singular time," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 118-127.
    3. Zhang, Xicheng, 2013. "Derivative formulas and gradient estimates for SDEs driven by α-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1213-1228.
    4. Feng-Yu Wang, 2014. "Derivative Formula and Gradient Estimates for Gruschin Type Semigroups," Journal of Theoretical Probability, Springer, vol. 27(1), pages 80-95, March.
    5. Xiliang Fan, 2019. "Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1360-1381, September.
    6. Yan, Litan & Yin, Xiuwei, 2018. "Bismut formula for a stochastic heat equation with fractional noise," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 165-172.
    7. Jianhai Bao & Xing Huang & Chenggui Yuan, 2019. "Convergence Rate of Euler–Maruyama Scheme for SDEs with Hölder–Dini Continuous Drifts," Journal of Theoretical Probability, Springer, vol. 32(2), pages 848-871, June.
    8. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
    9. Wujun Lv & Xing Huang, 2021. "Harnack and Shift Harnack Inequalities for Degenerate (Functional) Stochastic Partial Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 34(2), pages 827-851, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    2. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    3. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    4. P. Cattiaux & José R. León & C. Prieur, 2015. "Recursive estimation for stochastic damping hamiltonian systems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 401-424, September.
    5. Qiao, Huijie & Zhang, Xicheng, 2008. "Homeomorphism flows for non-Lipschitz stochastic differential equations with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2254-2268, December.
    6. Qiao, Huijie & Zhang, Xicheng, 2007. "Homeomorphism of solutions to backward SDEs and applications," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 399-408, March.
    7. Frank Bosserhoff & Mitja Stadje, 2019. "Robustness of Delta Hedging in a Jump-Diffusion Model," Papers 1910.08946, arXiv.org, revised Apr 2022.
    8. Ankit Kumar & Manil T. Mohan, 2023. "Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation," Journal of Theoretical Probability, Springer, vol. 36(1), pages 661-709, March.
    9. Kulik, Alexey M., 2011. "Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1044-1075, May.
    10. Jinxia Wang, 2015. "Nonexplosion and Pathwise Uniqueness of Stochastic Differential Equation Driven by Continuous Semimartingale with Non-Lipschitz Coefficients," Journal of Mathematics, Hindawi, vol. 2015, pages 1-5, May.
    11. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    12. Xi, Fubao & Yin, G., 2010. "Asymptotic properties of nonlinear autoregressive Markov processes with state-dependent switching," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1378-1389, July.
    13. Kontoyiannis, I. & Meyn, S.P., 2017. "Approximating a diffusion by a finite-state hidden Markov model," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2482-2507.
    14. Xi, Fubao & Yin, George, 2013. "The strong Feller property of switching jump-diffusion processes," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 761-767.
    15. Hu, Shulan & Wang, Ran, 2020. "Asymptotics of stochastic Burgers equation with jumps," Statistics & Probability Letters, Elsevier, vol. 162(C).
    16. Wang, Ran & Xu, Lihu, 2018. "Asymptotics for stochastic reaction–diffusion equation driven by subordinate Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1772-1796.
    17. Luo, Dejun, 2008. "Isotropic stochastic flow of homeomorphisms on associated with the critical Sobolev exponent," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1463-1488, August.
    18. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    19. Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
    20. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:1929-1949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.