IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i1d10.1007_s10959-022-01180-2.html
   My bibliography  Save this article

Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation

Author

Listed:
  • Ankit Kumar

    (Indian Institute of Technology Roorkee-IIT Roorkee)

  • Manil T. Mohan

    (Indian Institute of Technology Roorkee-IIT Roorkee)

Abstract

The present work deals with the global solvability as well as asymptotic analysis of the stochastic generalized Burgers–Huxley (SGBH) equation perturbed by a white-in-time and correlated-in-space noise defined in a bounded interval of $${\mathbb {R}}$$ R . We first prove the existence of a unique mild as well as strong solution to the SGBH equation and then obtain the existence of an invariant measure. Later, we establish two major properties of the Markovian semigroup associated with the solutions of the SGBH equation, that is, irreducibility and the strong Feller property. These two properties guarantee the uniqueness of invariant measures and ergodicity also. Then, under further assumptions on the noise coefficient, we discuss the ergodic behavior of the solution of the SGBH equation by providing a large deviation principle for the occupation measure for large time (Donsker–Varadhan), which describes the exact rate of exponential convergence.

Suggested Citation

  • Ankit Kumar & Manil T. Mohan, 2023. "Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation," Journal of Theoretical Probability, Springer, vol. 36(1), pages 661-709, March.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:1:d:10.1007_s10959-022-01180-2
    DOI: 10.1007/s10959-022-01180-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-022-01180-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-022-01180-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sritharan, S.S. & Sundar, P., 2006. "Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1636-1659, November.
    2. Gourcy, Mathieu, 2007. "A large deviation principle for 2D stochastic Navier-Stokes equation," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 904-927, July.
    3. Wang, Ran & Xu, Lihu, 2018. "Asymptotics for stochastic reaction–diffusion equation driven by subordinate Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1772-1796.
    4. Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shulan & Wang, Ran, 2020. "Asymptotics of stochastic Burgers equation with jumps," Statistics & Probability Letters, Elsevier, vol. 162(C).
    2. Mohan, Manil T., 2020. "Well posedness, large deviations and ergodicity of the stochastic 2D Oldroyd model of order one," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4513-4562.
    3. Wang, Ran & Xu, Lihu, 2018. "Asymptotics for stochastic reaction–diffusion equation driven by subordinate Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1772-1796.
    4. Maroulas, Vasileios & Xiong, Jie, 2013. "Large deviations for optimal filtering with fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2340-2352.
    5. Xu, Lihu, 2018. "Singular integrals of stable subordinator," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 115-118.
    6. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    7. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    8. Swie[combining cedilla]ch, Andrzej, 2009. "A PDE approach to large deviations in Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1081-1123, April.
    9. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    10. P. Cattiaux & José R. León & C. Prieur, 2015. "Recursive estimation for stochastic damping hamiltonian systems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 401-424, September.
    11. Sundar, P. & Yin, Hong, 2009. "Existence and uniqueness of solutions to the backward 2D stochastic Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1216-1234, April.
    12. Kulik, Alexey M., 2011. "Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1044-1075, May.
    13. Cai, Yujie & Huang, Jianhui & Maroulas, Vasileios, 2015. "Large deviations of mean-field stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 1-9.
    14. Wei Wang & Jianliang Zhai & Tusheng Zhang, 2022. "Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2916-2939, December.
    15. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    16. Xi, Fubao & Yin, G., 2010. "Asymptotic properties of nonlinear autoregressive Markov processes with state-dependent switching," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1378-1389, July.
    17. Kontoyiannis, I. & Meyn, S.P., 2017. "Approximating a diffusion by a finite-state hidden Markov model," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2482-2507.
    18. Salins, M., 2021. "Systems of small-noise stochastic reaction–diffusion equations satisfy a large deviations principle that is uniform over all initial data," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 159-194.
    19. Liu, Xianming, 2022. "Limits of invariant measures of stochastic Burgers equations driven by two kinds of α-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 1-21.
    20. Zhang, Xicheng, 2010. "Stochastic flows and Bismut formulas for stochastic Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1929-1949, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:1:d:10.1007_s10959-022-01180-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.