Derivative formulas and gradient estimates for SDEs driven by α-stable processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2012.11.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Xicheng, 2010. "Stochastic flows and Bismut formulas for stochastic Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1929-1949, September.
- Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Feng-Yu & Wang, Jian, 2013. "Coupling and strong Feller for jump processes on Banach spaces," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1588-1615.
- Liu, Xianming, 2022. "Limits of invariant measures of stochastic Burgers equations driven by two kinds of α-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 1-21.
- Luo, Dejun & Wang, Jian, 2019. "Refined basic couplings and Wasserstein-type distances for SDEs with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3129-3173.
- Xie, Yingchao & Zhang, Qi & Zhang, Xicheng, 2014. "Probabilistic approach for semi-linear stochastic fractal equations," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 3948-3964.
- Wang, Ran & Xu, Lihu, 2018. "Asymptotics for stochastic reaction–diffusion equation driven by subordinate Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1772-1796.
- Zhao, Huiyan & Xu, Siyan, 2020. "A stochastic Fubini theorem for α-stable process," Statistics & Probability Letters, Elsevier, vol. 160(C).
- Yan, Litan & Yin, Xiuwei, 2018. "Bismut formula for a stochastic heat equation with fractional noise," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 165-172.
- Karipova, Gulnur & Magdziarz, Marcin, 2017. "Pricing of basket options in subdiffusive fractional Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 245-253.
- Li, Zhi & Yan, Litan, 2018. "Harnack inequalities for SDEs driven by subordinator fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 45-53.
- Sun, Xiaobin & Xie, Longjie & Xie, Yingchao, 2020. "Derivative formula for the Feynman–Kac semigroup of SDEs driven by rotationally invariant α-stable process," Statistics & Probability Letters, Elsevier, vol. 158(C).
- Zhang, Hua, 2021. "Strong Feller property for one-dimensional Lévy processes driven stochastic differential equations with Hölder continuous coefficients," Statistics & Probability Letters, Elsevier, vol. 169(C).
- Wang, Linlin & Xie, Longjie & Zhang, Xicheng, 2015. "Derivative formulae for SDEs driven by multiplicative α-stable-like processes," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 867-885.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Georgii Riabov & Aleh Tsyvinski, 2021. "Policy with stochastic hysteresis," Papers 2104.10225, arXiv.org.
- Andreas Neuenkirch & Peter Parczewski, 2018. "Optimal Approximation of Skorohod Integrals," Journal of Theoretical Probability, Springer, vol. 31(1), pages 206-231, March.
- Feng-Yu Wang, 2014. "Derivative Formula and Gradient Estimates for Gruschin Type Semigroups," Journal of Theoretical Probability, Springer, vol. 27(1), pages 80-95, March.
- Raoul Pietersz & Antoon Pelsser, 2010.
"A comparison of single factor Markov-functional and multi factor market models,"
Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
- Pietersz, R. & Pelsser, A.A.J., 2005. "A Comparison of Single Factor Markov-Functional and Multi Factor Market Models," ERIM Report Series Research in Management ERS-2005-008-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Raoul Pietersz & Antoon Pelsser, 2005. "A Comparison of Single Factor Markov-functional and Multi Factor Market Models," Finance 0502008, University Library of Munich, Germany.
- Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
- Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
- Leão, Dorival & Ohashi, Alberto, 2010. "Weak Approximations for Wiener Functionals," Insper Working Papers wpe_215, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
- repec:pri:metric:wp033_2012_hansen_borovicka_hendricks_scheinkman_risk%20price%20dynamics. is not listed on IDEAS
- E. Benhamou & E. Gobet & M. Miri, 2009.
"Smart expansion and fast calibration for jump diffusions,"
Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2007. "Smart expansion and fast calibration for jump diffusion," Papers 0712.3485, arXiv.org, revised Sep 2008.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2009. "Smart expansion and fast calibration for jump diffusion," Post-Print hal-00200395, HAL.
- Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
- Ron Kaniel & Stathis Tompaidis & Alexander Zemlianov, 2008. "Efficient Computation of Hedging Parameters for Discretely Exercisable Options," Operations Research, INFORMS, vol. 56(4), pages 811-826, August.
- Wujun Lv & Xing Huang, 2021. "Harnack and Shift Harnack Inequalities for Degenerate (Functional) Stochastic Partial Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 34(2), pages 827-851, June.
- Warin Xavier, 2018. "Nesting Monte Carlo for high-dimensional non-linear PDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 225-247, December.
- Akihiko Takahashi & Toshihiro Yamada, 2012. "A Remark on Approximation of the Solutions to Partial Differential Equations in Finance," CIRJE F-Series CIRJE-F-842, CIRJE, Faculty of Economics, University of Tokyo.
- Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022.
"Avoiding zero probability events when computing Value at Risk contributions,"
Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
- Takaaki Koike & Yuri F. Saporito & Rodrigo S. Targino, 2020. "Avoiding zero probability events when computing Value at Risk contributions," Papers 2004.13235, arXiv.org, revised Jun 2022.
- N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
- Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
- Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
- Dong An & Noah Linden & Jin-Peng Liu & Ashley Montanaro & Changpeng Shao & Jiasu Wang, 2020. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance," Papers 2012.06283, arXiv.org, revised Jun 2021.
- Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," CIRJE F-Series CIRJE-F-1212, CIRJE, Faculty of Economics, University of Tokyo.
- Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
More about this item
Keywords
Derivative formulas; Gradient estimates; α-stable processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:4:p:1213-1228. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.