IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i8p1076-1092.html
   My bibliography  Save this article

Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths

Author

Listed:
  • Carmona, Philippe

Abstract

In this note we consider a chain of N oscillators, whose ends are in contact with two heat baths at different temperatures. Our main result is the exponential convergence to the unique invariant probability measure (the stationary state). We use the Lyapunov's function technique of Rey-Bellet and coauthors [Luc Rey-Bellet, Statistical mechanics of anharmonic lattices, in: Advances in Differential Equations and Mathematical Physics (Birmingham, AL, 2002), in: Contemp. Math., vol. 327, Amer. Math. Soc., Providence, RI, 2003, pp. 283-298. MR MR1991548 (2005a:82068)Â [11]; Luc Rey-Bellet, Lawrence E. Thomas, Fluctuations of the entropy production in anharmonic chains, Ann. Henri Poincaré 3 (3) (2002) 483-502. MR MR1915300 (2003g:82060); Luc Rey-Bellet, Lawrence E. Thomas, Exponential convergence to non-equilibrium stationary states in classical statistical mechanics, Comm. Math. Phys. 225 (2) (2002) 305-329. MR MR1889227 (2003f:82052); Luc Rey-Bellet, Lawrence E. Thomas, Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators, Comm. Math. Phys. 215 (1) (2000) 1-24. MR MR1799873 (2001k:82061)Â [12]; Jean-Pierre Eckmann, Claude-Alain Pillet, Luc Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Comm. Math. Phys. 201 (3) (1999) 657-697. MR MR1685893 (2000d:82025); Jean-Pierre Eckmann, Claude-Alain Pillet, Luc Rey-Bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Statist. Phys. 95 (1-2) (1999) 305-331. MR MR1705589 (2000h:82075)], with different model of heat baths, and adapt these techniques to two new case recently considered in the literature by Bernardin and Olla [Cédric Bernardin, Stefano Olla, Fourier's law for a microscopic model of heat conduction, J. Statist. Phys. 121 (3-4) (2005) 271-289. MR MR2185330] and Lefevere and Schenkel [R. Lefevere, A. Schenkel, Normal heat conductivity in a strongly pinned chain of anharmonic oscillators, J. Stat. Mech. Theory Exp. 2006 (02) (2006) L02001].

Suggested Citation

  • Carmona, Philippe, 2007. "Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 1076-1092, August.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:1076-1092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00190-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xicheng, 2010. "Stochastic flows and Bismut formulas for stochastic Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1929-1949, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:8:p:1076-1092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.