IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v91y2001i2p205-238.html
   My bibliography  Save this article

Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems

Author

Listed:
  • Wu, Liming

Abstract

A classical damping Hamiltonian system perturbed by a random force is considered. The locally uniform large deviation principle of Donsker and Varadhan is established for its occupation empirical measures for large time, under the condition, roughly speaking, that the force driven by the potential grows infinitely at infinity. Under the weaker condition that this force remains greater than some positive constant at infinity, we show that the system converges to its equilibrium measure with exponential rate, and obeys moreover the moderate deviation principle. Those results are obtained by constructing appropriate Lyapunov test functions, and are based on some results about large and moderate deviations and exponential convergence for general strong-Feller Markov processes. Moreover, these conditions on the potential are shown to be sharp.

Suggested Citation

  • Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
  • Handle: RePEc:eee:spapps:v:91:y:2001:i:2:p:205-238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(00)00061-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albeverio, Sergio & Kolokoltsov, Vassily N., 1997. "The rate of escape for some Gaussian processes and the scattering theory for their small perturbations," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 139-159, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:91:y:2001:i:2:p:205-238. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.