IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i5p1044-1075.html
   My bibliography  Save this article

Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes

Author

Listed:
  • Kulik, Alexey M.

Abstract

For Lp convergence rates of a time homogeneous Markov process, sufficient conditions are given in terms of an exponential [phi]-coupling. This provides sufficient conditions for Lp convergence rates and related spectral and functional properties (spectral gap and Poincaré inequality) in terms of appropriate combination of 'local mixing' and 'recurrence' conditions on the initial process, typical in the ergodic theory of Markov processes. The range of applications of the approach includes processes that are not time-reversible. In particular, sufficient conditions for the spectral gap property for the Lévy driven Ornstein-Uhlenbeck process are established.

Suggested Citation

  • Kulik, Alexey M., 2011. "Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1044-1075, May.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:5:p:1044-1075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00019-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Mu-Fa, 2000. "Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 281-297, June.
    2. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    3. Kulik, Alexey M., 2009. "Exponential ergodicity of the solutions to SDE's with a jump noise," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 602-632, February.
    4. Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
    5. Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng-Yu Wang & Jian Wang, 2015. "Functional Inequalities for Stable-Like Dirichlet Forms," Journal of Theoretical Probability, Springer, vol. 28(2), pages 423-448, June.
    2. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevei, Péter, 2018. "Ergodic properties of generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 156-181.
    2. Guo, Xianping & Liao, Zhong-Wei, 2021. "Estimate the exponential convergence rate of f-ergodicity via spectral gap," Statistics & Probability Letters, Elsevier, vol. 168(C).
    3. Uehara, Yuma, 2019. "Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4051-4081.
    4. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    5. Oleksii Kulyk, 2023. "Support Theorem for Lévy-driven Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1720-1742, September.
    6. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    7. Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
    8. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    9. E. Löcherbach, 2020. "Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2280-2314, December.
    10. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    11. Kulik, Alexei & Pavlyukevich, Ilya, 2021. "Moment bounds for dissipative semimartingales with heavy jumps," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 274-308.
    12. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    13. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    14. Ditlevsen, Susanne & Löcherbach, Eva, 2017. "Multi-class oscillating systems of interacting neurons," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1840-1869.
    15. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    16. Guodong Pang & Andrey Sarantsev & Yana Belopolskaya & Yuri Suhov, 2020. "Stationary distributions and convergence for M/M/1 queues in interactive random environment," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 357-392, April.
    17. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.
    18. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    19. Barndorff-Nielsen, Ole E. & Maejima, Makoto, 2008. "Semigroups of Upsilon transformations," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2334-2343, December.
    20. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:5:p:1044-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.