Derivative Formula and Gradient Estimates for Gruschin Type Semigroups
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-012-0427-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Xicheng, 2010. "Stochastic flows and Bismut formulas for stochastic Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1929-1949, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wujun Lv & Xing Huang, 2021. "Harnack and Shift Harnack Inequalities for Degenerate (Functional) Stochastic Partial Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 34(2), pages 827-851, June.
- Xiliang Fan, 2019. "Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1360-1381, September.
- Uda, Kenneth, 2021. "Averaging principle for stochastic differential equations in the random periodic regime," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 1-36.
- Xu, Jie & Wen, Jiaping & Mu, Jianyong & Liu, Jicheng, 2019. "Stochastic flows of SDEs with non-Lipschitz coefficients and singular time," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 118-127.
- Jianhai Bao & Xing Huang & Chenggui Yuan, 2019. "Convergence Rate of Euler–Maruyama Scheme for SDEs with Hölder–Dini Continuous Drifts," Journal of Theoretical Probability, Springer, vol. 32(2), pages 848-871, June.
- Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
- Zhang, Xicheng, 2013. "Derivative formulas and gradient estimates for SDEs driven by α-stable processes," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1213-1228.
- Yan, Litan & Yin, Xiuwei, 2018. "Bismut formula for a stochastic heat equation with fractional noise," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 165-172.
More about this item
Keywords
Gruschin semigroup; Derivative formula; Gradient estimate;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:1:d:10.1007_s10959-012-0427-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.