IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v146y2022icp114-142.html
   My bibliography  Save this article

Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises

Author

Listed:
  • Bao, Jianhai
  • Wang, Jian

Abstract

We establish exponential ergodicity for the stochastic Hamiltonian system (Xt,Vt)t≥0 on R2d with Lévy noises dXt=(aXt+bVt)dt,dVt=U(Xt,Vt)dt+dLt,where a≥0, b>0, U:R2d→Rd and (Lt)t≥0 is an Rd-valued pure jump Lévy process. The approach is based on a new refined basic coupling for Lévy processes and a Lyapunov function for stochastic Hamiltonian systems. In particular, we can handle the case that U(x,v)=−v−∇U0(x) with double well potential U0 which is super-linear growth at infinity such as U0(x)=c1(1+|x|2)l−c2|x|2 with l>1 or U0(x)=c1e(1+|x|2)l−c2|x|2 with l>0 for any c1,c2>0, and also deal with the case that the Lévy measure ν of (Lt)t≥0 is degenerate in the sense that ν(dz)≥c|z|d+θ01{00 and θ0∈(0,2), where z1 is the first component of the vector z∈Rd.

Suggested Citation

  • Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
  • Handle: RePEc:eee:spapps:v:146:y:2022:i:c:p:114-142
    DOI: 10.1016/j.spa.2021.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921002246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Mingjie & Wang, Jian, 2020. "Gradient estimates and ergodicity for SDEs driven by multiplicative Lévy noises via coupling," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3053-3094.
    2. Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
    3. Majka, Mateusz B., 2017. "Coupling and exponential ergodicity for stochastic differential equations driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4083-4125.
    4. Luo, Dejun & Wang, Jian, 2019. "Refined basic couplings and Wasserstein-type distances for SDEs with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3129-3173.
    5. Komorowski, Tomasz & Walczuk, Anna, 2012. "Central limit theorem for Markov processes with spectral gap in the Wasserstein metric," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2155-2184.
    6. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Jianhai & Fang, Rongjuan & Wang, Jian, 2024. "Exponential ergodicity of Lévy driven Langevin dynamics with singular potentials," Stochastic Processes and their Applications, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Jianhai & Fang, Rongjuan & Wang, Jian, 2024. "Exponential ergodicity of Lévy driven Langevin dynamics with singular potentials," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    2. Huang, Lu-Jing & Majka, Mateusz B. & Wang, Jian, 2022. "Strict Kantorovich contractions for Markov chains and Euler schemes with general noise," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 307-341.
    3. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    4. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    5. Jianhai Bao & Jian Wang, 2023. "Coupling methods and exponential ergodicity for two‐factor affine processes," Mathematische Nachrichten, Wiley Blackwell, vol. 296(5), pages 1716-1736, May.
    6. Xie, Longjie & Yang, Li, 2022. "The Smoluchowski–Kramers limits of stochastic differential equations with irregular coefficients," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 91-115.
    7. Liang, Mingjie & Wang, Jian, 2020. "Gradient estimates and ergodicity for SDEs driven by multiplicative Lévy noises via coupling," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3053-3094.
    8. Anna Melnykova, 2020. "Parametric inference for hypoelliptic ergodic diffusions with full observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 595-635, October.
    9. ur Rahman, Ghaus & Badshah, Qaisar & Agarwal, Ravi P. & Islam, Saeed, 2021. "Ergodicity & dynamical aspects of a stochastic childhood disease model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 738-764.
    10. Mattingly, Jonathan C. & McKinley, Scott A. & Pillai, Natesh S., 2012. "Geometric ergodicity of a bead–spring pair with stochastic Stokes forcing," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3953-3979.
    11. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    12. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    13. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    14. Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
    15. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    16. Jianhai Bao & Xing Huang & Chenggui Yuan, 2019. "Convergence Rate of Euler–Maruyama Scheme for SDEs with Hölder–Dini Continuous Drifts," Journal of Theoretical Probability, Springer, vol. 32(2), pages 848-871, June.
    17. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
    18. Casella, Bruno & Roberts, Gareth O. & Stramer, Osnat, 2011. "Stability of Partially Implicit Langevin Schemes and Their MCMC Variants," MPRA Paper 95220, University Library of Munich, Germany.
    19. Guillin, Arnaud, 2001. "Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 287-313, April.
    20. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:146:y:2022:i:c:p:114-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.