IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v162y2020ics0167715220300730.html
   My bibliography  Save this article

Asymptotics of stochastic Burgers equation with jumps

Author

Listed:
  • Hu, Shulan
  • Wang, Ran

Abstract

For one-dimensional stochastic Burgers equation driven by Brownian motion and Poisson process, we study the ψ-uniformly exponential ergodicity with ψ(x)=1+‖x‖, the moderate deviation principle and the large deviation principle for the occupation measures.

Suggested Citation

  • Hu, Shulan & Wang, Ran, 2020. "Asymptotics of stochastic Burgers equation with jumps," Statistics & Probability Letters, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:stapro:v:162:y:2020:i:c:s0167715220300730
    DOI: 10.1016/j.spl.2020.108770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Budhiraja, Amarjit & Chen, Jiang & Dupuis, Paul, 2013. "Large deviations for stochastic partial differential equations driven by a Poisson random measure," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 523-560.
    2. Gourcy, Mathieu, 2007. "A large deviation principle for 2D stochastic Navier-Stokes equation," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 904-927, July.
    3. Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
    4. Wang, Ran & Xu, Lihu, 2018. "Asymptotics for stochastic reaction–diffusion equation driven by subordinate Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1772-1796.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ankit Kumar & Manil T. Mohan, 2023. "Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation," Journal of Theoretical Probability, Springer, vol. 36(1), pages 661-709, March.
    2. Wang, Ran & Xu, Lihu, 2018. "Asymptotics for stochastic reaction–diffusion equation driven by subordinate Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1772-1796.
    3. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    4. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    5. Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
    6. Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
    7. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    8. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    9. Xie, Longjie, 2017. "Singular SDEs with critical non-local and non-symmetric Lévy type generator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3792-3824.
    10. Guillin, Arnaud, 2001. "Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 287-313, April.
    11. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    12. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    13. Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
    14. Xu, Lihu, 2018. "Singular integrals of stable subordinator," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 115-118.
    15. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    16. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    17. Bao, Jianhai & Fang, Rongjuan & Wang, Jian, 2024. "Exponential ergodicity of Lévy driven Langevin dynamics with singular potentials," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    18. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    19. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    20. P. Cattiaux & José R. León & C. Prieur, 2015. "Recursive estimation for stochastic damping hamiltonian systems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 401-424, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:162:y:2020:i:c:s0167715220300730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.