Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.114472
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
- Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.
- Liu, Zhenyu & Yao, Yuanpeng & Wu, Huiying, 2013. "Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1222-1232.
- Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
- Zhang, Zhengguo & Zhang, Ni & Peng, Jing & Fang, Xiaoming & Gao, Xuenong & Fang, Yutang, 2012. "Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 91(1), pages 426-431.
- Zheng, Zhang-Jing & Xu, Yang & Li, Ming-Jia, 2018. "Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance," Applied Energy, Elsevier, vol. 220(C), pages 447-454.
- Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
- Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
- Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
- Kumar, Ashish & Saha, Sandip K., 2018. "Latent heat thermal storage with variable porosity metal matrix: A numerical study," Renewable Energy, Elsevier, vol. 125(C), pages 962-973.
- Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
- Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
- Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
- jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Chao & Xu, Xing-Rong & Bake, Maitiniyazi & Wu, Chun-Mei & Li, You-Rong & Zheng, Zhang-Jing & Yu, Jia-Jia, 2024. "Numerical investigation and optimization of the melting performance of latent heat thermal energy storage unit strengthened by graded metal foam and mechanical rotation," Renewable Energy, Elsevier, vol. 227(C).
- Sebastian Gamisch & Stefan Gschwander & Stefan J. Rupitsch, 2021. "Numerical and Experimental Investigation of Wire Cloth Heat Exchanger for Latent Heat Storages," Energies, MDPI, vol. 14(22), pages 1-30, November.
- Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
- Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Pu, Liang & Zhang, Shengqi & Xu, Lingling & Ma, Zhenjun & Wang, Xinke, 2021. "Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam," Renewable Energy, Elsevier, vol. 174(C), pages 573-589.
- Ahmed Elkhatat & Shaheen A. Al-Muhtaseb, 2023. "Combined “Renewable Energy–Thermal Energy Storage (RE–TES)” Systems: A Review," Energies, MDPI, vol. 16(11), pages 1-46, June.
- Zhang, Shengqi & Pu, Liang & Mancin, Simone & Dai, Minghao & Xu, Lingling, 2022. "Role of partial and gradient filling strategies of copper foam on latent thermal energy storage: An experimental study," Energy, Elsevier, vol. 255(C).
- Wang, Zilong & Zhu, Mengshuai & Zhang, Hua & Zhou, Ying & Sun, Xiangxin & Dou, Binlin & Wu, Weidong & Zhang, Guanhua & Jiang, Long, 2023. "Experimental and simulation study on the heat transfer mechanism and heat storage performance of copper metal foam composite paraffin wax during melting process," Energy, Elsevier, vol. 272(C).
- Li, Jiaqi & Tu, Rang & Liu, Mengdan & Wang, Siqi, 2021. "Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields," Energy, Elsevier, vol. 221(C).
- Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
- Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Hou, Yujie & Chen, Hua & Liu, Xiuli, 2022. "Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM," Renewable Energy, Elsevier, vol. 192(C), pages 561-571.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hou, Yujie & Chen, Hua & Liu, Xiuli, 2022. "Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM," Renewable Energy, Elsevier, vol. 192(C), pages 561-571.
- Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
- Zheng, Zhang-Jing & Yang, Chao & Xu, Yang & Cai, Xiao, 2021. "Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity," Renewable Energy, Elsevier, vol. 172(C), pages 802-815.
- Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
- Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Yang, Chao & Xu, Xing-Rong & Bake, Maitiniyazi & Wu, Chun-Mei & Li, You-Rong & Zheng, Zhang-Jing & Yu, Jia-Jia, 2024. "Numerical investigation and optimization of the melting performance of latent heat thermal energy storage unit strengthened by graded metal foam and mechanical rotation," Renewable Energy, Elsevier, vol. 227(C).
- Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
- Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
- Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
- Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
- Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
- Zuo, Hongyang & Wu, Mingyang & Zeng, Kuo & Zhou, Yuan & Kong, Jiayue & Qiu, Yi & Lin, Meng & Flamant, Gilles, 2021. "Numerical investigation and optimal design of partially filled sectorial metal foam configuration in horizontal latent heat storage unit," Energy, Elsevier, vol. 237(C).
- Yang Xu & Hang Yin & Chen He & Yong Wei & Ming Cui & Zhang-Jing Zheng, 2022. "Structure Optimization of Longitudinal Rectangular Fins to Improve the Melting Performance of Phase Change Materials through Genetic Algorithm," Energies, MDPI, vol. 15(24), pages 1-21, December.
- Ying, Xuchen & Huang, Weijia & Liu, Wenhua & Liu, Guiliang & Li, Jun & Yang, Mo, 2022. "Asymmetric phenomenon of flow and heat transfer in charging process of thermal energy storage based on an entire domain model," Applied Energy, Elsevier, vol. 316(C).
- Pu, Liang & Zhang, Shengqi & Xu, Lingling & Ma, Zhenjun & Wang, Xinke, 2021. "Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam," Renewable Energy, Elsevier, vol. 174(C), pages 573-589.
- Xue Chen & Xiaolei Li & Xinlin Xia & Chuang Sun & Rongqiang Liu, 2019. "Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement," Energies, MDPI, vol. 12(17), pages 1-18, August.
- Zhang, Shengqi & Pu, Liang & Mancin, Simone & Dai, Minghao & Xu, Lingling, 2022. "Role of partial and gradient filling strategies of copper foam on latent thermal energy storage: An experimental study," Energy, Elsevier, vol. 255(C).
More about this item
Keywords
Homogeneous copper foam; Gradient porosity copper foam; Shell-and-tube thermal energy storage; Phase change material;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919321609. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.