IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1083-1100.html
   My bibliography  Save this article

A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics

Author

Listed:
  • López-Núñez, Oscar A.
  • Alfaro-Ayala, J. Arturo
  • Jaramillo, O.A.
  • Ramírez-Minguela, J.J.
  • Castro, J. Carlos
  • Damian-Ascencio, Cesar E.
  • Cano-Andrade, Sergio

Abstract

This work presents an energy and entropy generation analysis of a Linear Fresnel Reflector using the Computational Fluid Dynamics. It consists of 25 mirrors oriented to a receiver tube, which is located inside a Compound Parabolic Concentrator. The formulation of the entropy generation rate considers the phenomena of viscous dissipation, heat transfer and radiation, it is performed in a local and global way and implemented by user-defined functions. Results of the incident radiation, absorbed radiation, radiation temperature, temperature gradients, air velocity contours, Nusselt number and optical efficiency, are presented. Results show that the maximum values of the absorbed radiation (7800 W m−2), incident radiation (30,000 W m−2) and radiation temperature were located at the receiver tube. Also, the maximum value of the temperature gradient (39,000 K m−1) was obtained on the lower half of the receiver tube and the upper part of the secondary receiver. Moreover, the highest values of the entropy generation rate were located at the upper part of the secondary receiver for each phenomenon considered. It is concluded that the entropy generation rate due to heat transfer phenomenon is the most dominant (97.4% of the total), followed by radiation (2.59%) and then by viscous dissipation (negligible).

Suggested Citation

  • López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Jaramillo, O.A. & Ramírez-Minguela, J.J. & Castro, J. Carlos & Damian-Ascencio, Cesar E. & Cano-Andrade, Sergio, 2020. "A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics," Renewable Energy, Elsevier, vol. 146(C), pages 1083-1100.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1083-1100
    DOI: 10.1016/j.renene.2019.06.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811930984X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    2. Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
    3. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2013. "Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios," Energy, Elsevier, vol. 53(C), pages 114-127.
    4. Zhu, Xiaowei & Zhu, Lei & Zhao, Jingquan, 2017. "Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver," Energy, Elsevier, vol. 141(C), pages 1146-1155.
    5. Pandey, Krishna Murari & Chaurasiya, Rajesh, 2017. "A review on analysis and development of solar flat plate collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 641-650.
    6. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    7. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
    8. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    9. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    10. Cocco, Daniele & Petrollese, Mario & Tola, Vittorio, 2017. "Exergy analysis of concentrating solar systems for heat and power production," Energy, Elsevier, vol. 130(C), pages 192-203.
    11. Dabiri, Soroush & Khodabandeh, Erfan & Poorfar, Alireza Khoeini & Mashayekhi, Ramin & Toghraie, Davood & Abadian Zade, Seyed Ali, 2018. "Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Energy, Elsevier, vol. 153(C), pages 17-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    2. Shahsavar, Amin & Majidzadeh, Amir Hossein & Mahani, Roohollah Babaei & Talebizadehsardari, Pouyan, 2021. "Entropy and thermal performance analysis of PCM melting and solidification mechanisms in a wavy channel triplex-tube heat exchanger," Renewable Energy, Elsevier, vol. 165(P2), pages 52-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
    3. Barbón, A. & López-Smeetz, C. & Bayón, L. & Pardellas, A., 2020. "Wind effects on heat loss from a receiver with longitudinal tilt angle of small-scale linear Fresnel reflectors for urban applications," Renewable Energy, Elsevier, vol. 162(C), pages 2166-2181.
    4. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    5. Tilahun, Fitsum Bekele & Bhandari, Ramchandra & Mamo, Mengesha, 2019. "Design optimization and control approach for a solar-augmented industrial heating," Energy, Elsevier, vol. 179(C), pages 186-198.
    6. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    7. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    8. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2021. "Scaling-up the installation of hybrid solar collectors to reduce CO2 emissions in a Mexican industrial sector from now to 2030," Applied Energy, Elsevier, vol. 298(C).
    9. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    10. Alireza Rafiei & Reyhaneh Loni & Gholamhassan Najafi & Talal Yusaf, 2020. "Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air," Energies, MDPI, vol. 13(8), pages 1-24, April.
    11. Kumar, Vinay & Murthy, S.V.S.S.N.V.G. Krishna & Kumar, B.V. Rathish, 2023. "Multi-force effect on fluid flow, heat and mass transfer, and entropy generation in a stratified fluid-saturated porous enclosure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 328-367.
    12. Liu, Peng & Dong, Zhimin & Xiao, Hui & Liu, Zhichun & Liu, Wei, 2021. "Thermal-hydraulic performance analysis of a novel parabolic trough receiver with double tube for solar cascade heat collection," Energy, Elsevier, vol. 219(C).
    13. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    14. Filipović, P. & Dović, D. & Horvat, I. & Ranilović, B., 2023. "Evaluation of a novel polymer solar collector using numerical and experimental methods," Energy, Elsevier, vol. 284(C).
    15. Varun, K. & Arunachala, U.C. & Elton, D.N., 2020. "Trade-off between wire matrix and twisted tape: SOLTRACE® based indoor study of parabolic trough collector," Renewable Energy, Elsevier, vol. 156(C), pages 478-492.
    16. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    17. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    18. Peng, Qingguo & E, Jiaqiang & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Meng, Tian & Qiu, Runzhi, 2018. "Effects analysis on combustion and thermal performance enhancement of a nozzle-inlet micro tube fueled by the premixed hydrogen/air," Energy, Elsevier, vol. 160(C), pages 349-360.
    19. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    20. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1083-1100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.