IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221002607.html
   My bibliography  Save this article

Turbo-assisted direct solar air heater for medium temperature industrial processes using Linear Fresnel Collectors. Assessment on daily and yearly basis

Author

Listed:
  • Famiglietti, Antonio
  • Lecuona, Antonio
  • Ibarra, Mercedes
  • Roa, Javier

Abstract

The study analyzes an innovative concentrating solar thermal system aimed at the direct production of hot air for industrial applications. Air is heated inside linear Fresnel collectors in an open to atmosphere circuit, not requiring the use of a primary heat transfer fluid and a heat exchanger, with their associated cost and maintenance. Matching an automotive turbocharger with the solar field avoids auxiliary energy consumption for pumping the airflow. The detailed quasi-steady numerical model implemented, including commercial collector and turbocharger technical features, allows to scrutinize the daily and yearly operating time profile of a medium scale plant with a 633.6 m2 solar field. Considering the typical meteorological year of the selected location (Madrid, Spain), the numerical results indicate that hot air is provided at a remarkable quasi-constant temperature between 300 °C and 400 °C despite the solar variations, delivering 330 MW h per year without overheating the receiver evacuated tubes.

Suggested Citation

  • Famiglietti, Antonio & Lecuona, Antonio & Ibarra, Mercedes & Roa, Javier, 2021. "Turbo-assisted direct solar air heater for medium temperature industrial processes using Linear Fresnel Collectors. Assessment on daily and yearly basis," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002607
    DOI: 10.1016/j.energy.2021.120011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    2. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng, 2015. "Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine," Energy, Elsevier, vol. 87(C), pages 628-637.
    3. Fang, Xiande & Dai, Qiumin & Yin, Yanxin & Xu, Yu, 2010. "A compact and accurate empirical model for turbine mass flow characteristics," Energy, Elsevier, vol. 35(12), pages 4819-4823.
    4. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
    5. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    6. Muñoz-Anton, J. & Biencinto, M. & Zarza, E. & Díez, L.E., 2014. "Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid," Applied Energy, Elsevier, vol. 135(C), pages 373-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amine Allouhi, 2023. "Latent Thermal Energy Storage for Solar Industrial Drying Applications," Sustainability, MDPI, vol. 15(17), pages 1-18, September.
    2. Famiglietti, Antonio & Lecuona, Antonio, 2021. "Small-scale linear Fresnel collector using air as heat transfer fluid: Experimental characterization," Renewable Energy, Elsevier, vol. 176(C), pages 459-474.
    3. Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    2. Tregenza, Owen & Olshina, Noam & Hield, Peter & Manzie, Chris & Hulston, Chris, 2022. "A comparison of turbine mass flow models based on pragmatic identification data sets for turbogenerator model development," Energy, Elsevier, vol. 247(C).
    3. Salameh, Georges & Chesse, Pascal & Chalet, David, 2019. "Mass flow extrapolation model for automotive turbine and confrontation to experiments," Energy, Elsevier, vol. 167(C), pages 325-336.
    4. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    5. Liu, Zheng & Copeland, Colin, 2018. "New method for mapping radial turbines exposed to pulsating flows," Energy, Elsevier, vol. 162(C), pages 1205-1222.
    6. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    7. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    9. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    10. Nabeel Abed & Imran Afgan & Andrea Cioncolini & Hector Iacovides & Adel Nasser, 2020. "Assessment and Evaluation of the Thermal Performance of Various Working Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants under Non-Uniform Heat Flux Distribution Conditions," Energies, MDPI, vol. 13(15), pages 1-29, July.
    11. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    12. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    13. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    14. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    15. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    16. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    17. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    18. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    19. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.
    20. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.