IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp603-614.html
   My bibliography  Save this article

Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms

Author

Listed:
  • Silva, R.
  • Berenguel, M.
  • Pérez, M.
  • Fernández-Garcia, A.

Abstract

A thermo-economic design optimization of a parabolic trough solar plant for industrial processes with memetic algorithms is developed. The design domain variables considered in the optimization routine are the number of collectors in series, number of collector rows, row spacing, and storage volume. Life cycle savings, levelized cost of energy, and payback time objective functions are compared to study the influence on optimal design point location. Furthermore a multi-objective optimization approach is proposed to analyze the design problem from a multi-economic criteria point of view. An extensive set of optimization cases are performed to estimate the influence of fuel price trend, plant location, demand profile, operation conditions, solar field orientation, and radiation uncertainty on optimal design. The results allow quantifying as thermo-economic design optimization based on short term criteria as the payback time leads to smaller plants with higher solar field efficiencies and smaller solar fractions, while the consideration of optimization criteria based on long term performance of the plants, as life cycle savings based optimization, leads to the reverse conclusion. The role of plant location and future evolution of gas prices in the thermo-economic performance of the solar plant has been also analyzed. Thermo-economic optimization of a parabolic trough solar plant design for the reference industrial process heat application at a southern Mediterranean country considered in this work shows a levelized cost of energy of 5c€/kWh.

Suggested Citation

  • Silva, R. & Berenguel, M. & Pérez, M. & Fernández-Garcia, A., 2014. "Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms," Applied Energy, Elsevier, vol. 113(C), pages 603-614.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:603-614
    DOI: 10.1016/j.apenergy.2013.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    2. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muñoz-Anton, J. & Biencinto, M. & Zarza, E. & Díez, L.E., 2014. "Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid," Applied Energy, Elsevier, vol. 135(C), pages 373-381.
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    3. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    5. Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
    6. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    7. González-Portillo, Luis F. & Muñoz-Antón, Javier & Martínez-Val, José M., 2017. "An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants," Applied Energy, Elsevier, vol. 185(P1), pages 531-546.
    8. Pizzolato, A. & Donato, F. & Verda, V. & Santarelli, M. & Sciacovelli, A., 2017. "CSP plants with thermocline thermal energy storage and integrated steam generator – Techno-economic modeling and design optimization," Energy, Elsevier, vol. 139(C), pages 231-246.
    9. Jannesari, Hamid & Babaei, Banafsheh, 2018. "Optimization of solar assisted heating system for electro-winning process in the copper complex," Energy, Elsevier, vol. 158(C), pages 957-966.
    10. Holl, Mario & Pelz, Peter F., 2016. "Multi-pole system analysis (MPSA) – A systematic method towards techno-economic optimal system design," Applied Energy, Elsevier, vol. 169(C), pages 937-949.
    11. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    12. Isidoro Lillo-Bravo & Elena Pérez-Aparicio & Natividad Sancho-Caparrini & Manuel Antonio Silva-Pérez, 2018. "Benefits of Medium Temperature Solar Concentration Technologies as Thermal Energy Source of Industrial Processes in Spain," Energies, MDPI, vol. 11(11), pages 1-30, October.
    13. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
    14. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    15. Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
    16. Sunil, & Sinha, Rahul & Chaitanya, Bathina & Rajan, Birendra Kumar & Agarwal, Anurag & Thakur, Ajay D. & Raj, Rishi, 2019. "Design, fabrication, and performance evaluation of a novel biomass-gasification-based hot water generation system," Energy, Elsevier, vol. 185(C), pages 148-157.
    17. Tian, Zhiyong & Perers, Bengt & Furbo, Simon & Fan, Jianhua, 2017. "Annual measured and simulated thermal performance analysis of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series," Applied Energy, Elsevier, vol. 205(C), pages 417-427.
    18. Isidoro Lillo & Elena Pérez & Sara Moreno & Manuel Silva, 2017. "Process Heat Generation Potential from Solar Concentration Technologies in Latin America: The Case of Argentina," Energies, MDPI, vol. 10(3), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    4. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    5. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    6. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    7. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    8. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    9. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    10. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    11. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    12. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    13. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    14. Sharafi, Masoud & ELMekkawy, Tarek Y., 2014. "Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach," Renewable Energy, Elsevier, vol. 68(C), pages 67-79.
    15. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    16. Yuxiao Qin & Guodong Zhao & Qingsong Hua & Li Sun & Soumyadeep Nag, 2019. "Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    17. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    18. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    19. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    20. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:603-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.