IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp765-773.html
   My bibliography  Save this article

Light enhancement strategies improve microalgal biomass productivity

Author

Listed:
  • Ramanna, Luveshan
  • Rawat, Ismail
  • Bux, Faizal

Abstract

The rapid increase in global energy demand, global warming and climate change have driven the search for alternative renewable sources of energy with lesser environmental impact. Microalgae have immense potential as renewable energy feedstocks. Microalgal biomass can be used to generate a variety of biofuels including biodiesel, bioethanol, bio-hydrogen, bio-methane and syngas. One of the major hurdles to the commercialization of microalgae-based biofuels and products is limited biomass productivity. Considerable amounts of research have been conducted into enhancing microalgal biomass production due to its potential sustainability and variety of applications. The traditional methods of improving biomass productivity are limited to adaptation of cultivation conditions and more recently genetic engineering. Light is a crucial factor that governs microalgal growth. Research on the adaptation and manipulation of natural light rather than adaptation of microalgae has been very limited. Microalgae utilize only a small fraction of light wavelengths from the wide spectrum of solar radiation for photosynthesis. In order to enhance microalgal biomass, improved photosynthetic efficiency is essential. This can be accomplished by the manipulation of the light spectrum to achieve an optimal balance between photosynthesis and photoprotection. Manipulation of incident irradiance may be viable for increased light harvesting by algae. This not only reduces unused wavelengths but also concentrates the wavelengths in a range utilized by algae. This would allow for a maximum utilization of the light spectrum by microalgae. This review critically analyses different light manipulation techniques that modify the spectrum of light received by the algae to improve biomass productivity.

Suggested Citation

  • Ramanna, Luveshan & Rawat, Ismail & Bux, Faizal, 2017. "Light enhancement strategies improve microalgal biomass productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 765-773.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:765-773
    DOI: 10.1016/j.rser.2017.05.202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sirajunnisa, Abdul Razack & Surendhiran, Duraiarasan, 2016. "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 248-267.
    2. Salam, Kamoru A. & Velasquez-Orta, Sharon B. & Harvey, Adam P., 2016. "A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1179-1198.
    3. Katiyar, Richa & Gurjar, B.R. & Biswas, Shalini & Pruthi, Vikas & Kumar, Nalin & Kumar, Prashant, 2017. "Microalgae: An emerging source of energy based bio-products and a solution for environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1083-1093.
    4. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    5. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    6. Pawar, Sanjay, 2016. "Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 640-653.
    7. Singh, Poonam & Kumari, Sheena & Guldhe, Abhishek & Misra, Rohit & Rawat, Ismail & Bux, Faizal, 2016. "Trends and novel strategies for enhancing lipid accumulation and quality in microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1-16.
    8. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    9. Liu, Junying & Song, Yunmeng & Qiu, Wen, 2017. "Oleaginous microalgae Nannochloropsis as a new model for biofuel production: Review & analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 154-162.
    10. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    11. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    12. Piloto-Rodríguez, Ramón & Sánchez-Borroto, Yisel & Melo-Espinosa, Eliezer Ahmed & Verhelst, Sebastian, 2017. "Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 833-842.
    13. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    14. Kosinkova, Jana & Doshi, Amar & Maire, Juliette & Ristovski, Zoran & Brown, Richard & Rainey, Thomas J., 2015. "Measuring the regional availability of biomass for biofuels and the potential for microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1271-1285.
    15. Jayakumar, Saravanan & Yusoff, Mashitah M. & Rahim, Mohd Hasbi Ab. & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj, 2017. "The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 33-47.
    16. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    17. Jankowska, Ewelina & Sahu, Ashish K. & Oleskowicz-Popiel, Piotr, 2017. "Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 692-709.
    18. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    19. Zhao, Bingtao & Su, Yaxin, 2014. "Process effect of microalgal-carbon dioxide fixation and biomass production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 121-132.
    20. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    21. D’Alessandro, Emmanuel B. & Antoniosi Filho, Nelson R., 2016. "Concepts and studies on lipid and pigments of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 832-841.
    22. Moheimani, Navid Reza & Parlevliet, David, 2013. "Sustainable solar energy conversion to chemical and electrical energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 494-504.
    23. Zhu, L.-D. & Hiltunen, E., 2016. "Application of livestock waste compost to cultivate microalgae for bioproducts production: A feasible framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1285-1290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Elmalky, Adham M. & Araji, Mohamad T., 2023. "Multi-objective problem of optimizing heat transfer and energy production in algal bioreactive façades," Energy, Elsevier, vol. 268(C).
    3. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Paraskevi Psachoulia & Christos Chatzidoukas, 2021. "Illumination Policies for Stichococcus sp. Cultures in an Optimally Operating Lab-Scale PBR toward the Directed Photosynthetic Production of Desired Products," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    5. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    7. Zahra Shokravi & Hoofar Shokravi & Ong Hwai Chyuan & Woei Jye Lau & Seyed Saeid Rahimian Koloor & Michal Petrů & Ahmad Fauzi Ismail, 2020. "Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    8. Hao Yuan & Yi Wang & Yanaoming Xi & Zeyi Jiang & Xinru Zhang & Xinyu Wang & Xinxin Zhang, 2020. "Light-Emitting Diode Power Conversion Capability and CO 2 Fixation Rate of Microalgae Biofilm Cultured Under Different Light Spectra," Energies, MDPI, vol. 13(7), pages 1-10, March.
    9. Byung Sun Yu & Young Joon Sung & Min Eui Hong & Sang Jun Sim, 2021. "Improvement of Photoautotrophic Algal Biomass Production after Interrupted CO 2 Supply by Urea and KH 2 PO 4 Injection," Energies, MDPI, vol. 14(3), pages 1-14, February.
    10. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    11. Ravindra Prasad & Sanjay Kumar Gupta & Nisha Shabnam & Carlos Yure B. Oliveira & Arvind Kumar Nema & Faiz Ahmad Ansari & Faizal Bux, 2021. "Role of Microalgae in Global CO 2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
    12. Jingjing Wang & Huaxing Bi & Yubo Sun & Hangqi Duan & Ruidong Peng, 2018. "The Improved Canopy Shading Model Based on the Apple Intercropping System (Case Study: Loess Plateau, China)," Sustainability, MDPI, vol. 10(10), pages 1-14, September.
    13. Yuan, Shuo & Lei, Wenbin & Liu, Qi & Liu, Runze & Liu, Jingping & Fu, Jianqin & Han, Yubo, 2023. "Distribution and environmental impact of microalgae production potential under the carbon-neutral target," Energy, Elsevier, vol. 263(PA).
    14. Chang, Wenjuan & Li, Yanpeng & Qu, Yanhui & Liu, Yi & Zhang, Gaoshan & Zhao, Yan & Liu, Siyu, 2022. "Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA," Renewable Energy, Elsevier, vol. 187(C), pages 819-828.
    15. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    16. Xinru Zhang & Hao Yuan & Libo Guan & Xinyu Wang & Yi Wang & Zeyi Jiang & Limei Cao & Xinxin Zhang, 2019. "Influence of Photoperiods on Microalgae Biofilm: Photosynthetic Performance, Biomass Yield, and Cellular Composition," Energies, MDPI, vol. 12(19), pages 1-10, September.
    17. Ma, Shiyan & Huang, Yun & Zhu, Xianqing & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Growth-based dynamic light transmission modeling and optimization in microalgal photobioreactors for high efficiency CO2 fixation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    18. Changliang Nie & Liqun Jiang & Qingjie Hou & Zhigang Yang & Ze Yu & Haiyan Pei, 2020. "Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16," Energies, MDPI, vol. 13(4), pages 1-15, February.
    19. Poh, Zhia Lerc & Amalina Kadir, Wan Nadiah & Lam, Man Kee & Uemura, Yoshimitsu & Suparmaniam, Uganeeswary & Lim, Jun Wei & Show, Pau Loke & Lee, Keat Tong, 2020. "The effect of stress environment towards lipid accumulation in microalgae after harvesting," Renewable Energy, Elsevier, vol. 154(C), pages 1083-1091.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    2. Kumar, B. Ramesh & Mathimani, Thangavel & Sudhakar, M.P. & Rajendran, Karthik & Nizami, Abdul-Sattar & Brindhadevi, Kathirvel & Pugazhendhi, Arivalagan, 2021. "A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    4. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    5. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    8. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    9. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    10. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    11. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    12. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    13. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    15. Chu, Ruoyu & Li, Shuangxi & Zhu, Liandong & Yin, Zhihong & Hu, Dan & Liu, Chenchen & Mo, Fan, 2021. "A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    17. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    18. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    19. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    20. Raeisossadati, Mohammadjavad & Moheimani, Navid Reza & Parlevliet, David, 2019. "Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 47-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:765-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.