IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v197y2024ics1364032124001370.html
   My bibliography  Save this article

Growth-based dynamic light transmission modeling and optimization in microalgal photobioreactors for high efficiency CO2 fixation

Author

Listed:
  • Ma, Shiyan
  • Huang, Yun
  • Zhu, Xianqing
  • Xia, Ao
  • Zhu, Xun
  • Liao, Qiang

Abstract

Light availability greatly affects microalgal photosynthetic carbon sequestration and biomass production. However, the continuously changing light transmission during microalgal growth poses a significant challenge for enhancing their performance from the light optimization perspective. In this study, the growth-dependent light transmission characteristics in microalgal suspensions were investigated. As microalgae grew, the light saturation regions within the microalgal suspension expanded initially and then contracted, while the light inhibition expanded and the light limitation regions continuously shrank. Although biomass accumulation was relatively slow during the early growth stage (time <50 h) with biomass concentrations below 0.5 g/L, rapid changes in light attenuation occurred. Furthermore, the light-dependent local growth kinetic was developed to predict microalgal growth and CO2 fixation potential during growth. A contraction of the local microalgal CO2 fixation and specific growth rate distribution curve towards the incident light source occurred with its growth. Finally, the performance-enhancing effects of light optimization strategies on flat plate photobioreactors were analyzed based on the above model. Microalgal growth potential and CO2 fixation performance in the flat plate reactor with 2 cm light path could be increased by up to 188% when the growth-based light intensity enhancement strategy was adopted. It could be further increased by approximately 31% when the light was changed from single-sided to double-sided illumination (same light energy input), and the maximum net profit from microalgal cultivation could be enhanced by 60%. In conclusion, this study provides a unique insight into promoting microalgal carbon sequestration and biomass production from the light optimization perspective.

Suggested Citation

  • Ma, Shiyan & Huang, Yun & Zhu, Xianqing & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Growth-based dynamic light transmission modeling and optimization in microalgal photobioreactors for high efficiency CO2 fixation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001370
    DOI: 10.1016/j.rser.2024.114414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124001370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramanna, Luveshan & Rawat, Ismail & Bux, Faizal, 2017. "Light enhancement strategies improve microalgal biomass productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 765-773.
    2. Slegers, P.M. & van Beveren, P.J.M. & Wijffels, R.H. & van Straten, G. & van Boxtel, A.J.B., 2013. "Scenario analysis of large scale algae production in tubular photobioreactors," Applied Energy, Elsevier, vol. 105(C), pages 395-406.
    3. Singh, R.N. & Sharma, Shaishav, 2012. "Development of suitable photobioreactor for algae production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2347-2353.
    4. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Singh, S.P. & Singh, Priyanka, 2015. "Effect of temperature and light on the growth of algae species: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 431-444.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    2. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    3. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    4. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    8. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    9. Shariff, Shoaib & Chakraborty, Saikat, 2017. "Two-scale model for quantifying the effects of laminar and turbulent mixing on algal growth in loop photobioreactors," Applied Energy, Elsevier, vol. 185(P2), pages 973-984.
    10. Chang, Wenjuan & Li, Yanpeng & Qu, Yanhui & Liu, Yi & Zhang, Gaoshan & Zhao, Yan & Liu, Siyu, 2022. "Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA," Renewable Energy, Elsevier, vol. 187(C), pages 819-828.
    11. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    13. Najeeha Mohd Apandi & Mimi Suliza Muhamad & Radin Maya Saphira Radin Mohamed & Norshuhaila Mohamed Sunar & Adel Al-Gheethi & Paran Gani & Fahmi A. Rahman, 2021. "Optimizing of Microalgae Scenedesmus sp. Biomass Production in Wet Market Wastewater Using Response Surface Methodology," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    14. Yuan, Shuo & Lei, Wenbin & Liu, Qi & Liu, Runze & Liu, Jingping & Fu, Jianqin & Han, Yubo, 2023. "Distribution and environmental impact of microalgae production potential under the carbon-neutral target," Energy, Elsevier, vol. 263(PA).
    15. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
    16. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    17. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Pawar, Sanjay, 2016. "Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 640-653.
    19. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    20. Ravindra Prasad & Sanjay Kumar Gupta & Nisha Shabnam & Carlos Yure B. Oliveira & Arvind Kumar Nema & Faiz Ahmad Ansari & Faizal Bux, 2021. "Role of Microalgae in Global CO 2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective," Sustainability, MDPI, vol. 13(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.