IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p964-d323412.html
   My bibliography  Save this article

Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16

Author

Listed:
  • Changliang Nie

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
    Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China)

  • Liqun Jiang

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
    Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China)

  • Qingjie Hou

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
    Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China)

  • Zhigang Yang

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
    Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China)

  • Ze Yu

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
    Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China)

  • Haiyan Pei

    (School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
    Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
    State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China)

Abstract

Overproduction of biomass and hyper-accumulation of lipids endow microalgae with promising characteristics to realize the cost-effective potential of advanced bioenergy. This study sought to heuristically optimize the culture conditions on a rarely reported Golenkinia sp. The results indicate that Golenkinia SDEC-16 can withstand the strong light intensity and grow in a modified BG11 medium. The optimal culture conditions for the favorable tradeoff between biomass and lipid accumulation were suggested as follows, 25,000 lux of light intensity, 9 mM of initial nitrogen concentration, and 20 mM of initial sodium chloride concentration. Under these conditions, the biomass concentration and productivity reached 6.65 g/L and 545 mg/L/d, and the synchronous lipid content and productivity reached 54.38% and 296.39 mg/L/d. Hypersalinity significantly promoted lipid contents at the cost of biomass and resulted in an increase of cell size but loss of spines of Golenkinia SDEC-16. The results shed new light on optimizing biomass and lipid productivity.

Suggested Citation

  • Changliang Nie & Liqun Jiang & Qingjie Hou & Zhigang Yang & Ze Yu & Haiyan Pei, 2020. "Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16," Energies, MDPI, vol. 13(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:964-:d:323412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Maqsood Alam & Abdul Samad Mumtaz & Megan Russell & Melanie Grogger & Don Veverka & Patrick C. Hallenbeck, 2019. "Isolation and Characterization of Microalgae from Diverse Pakistani Habitats: Exploring Third-Generation Biofuel Potential," Energies, MDPI, vol. 12(14), pages 1-17, July.
    2. Nie, Changliang & Pei, Haiyan & Jiang, Liqun & Cheng, Juan & Han, Fei, 2018. "Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment," Renewable Energy, Elsevier, vol. 122(C), pages 517-525.
    3. Ramanna, Luveshan & Rawat, Ismail & Bux, Faizal, 2017. "Light enhancement strategies improve microalgal biomass productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 765-773.
    4. Chia, Shir Reen & Ong, Hwai Chyuan & Chew, Kit Wayne & Show, Pau Loke & Phang, Siew-Moi & Ling, Tau Chuan & Nagarajan, Dillirani & Lee, Duu-Jong & Chang, Jo-Shu, 2018. "Sustainable approaches for algae utilisation in bioenergy production," Renewable Energy, Elsevier, vol. 129(PB), pages 838-852.
    5. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana F. Esteves & Eva M. Salgado & José C. M. Pires, 2022. "Recent Advances in Microalgal Biorefineries," Energies, MDPI, vol. 15(16), pages 1-4, August.
    2. Jiang, Liqun & Li, Yizhen & Pei, Haiyan, 2021. "Algal–bacterial consortia for bioproduct generation and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Chang, Wenjuan & Li, Yanpeng & Qu, Yanhui & Liu, Yi & Zhang, Gaoshan & Zhao, Yan & Liu, Siyu, 2022. "Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA," Renewable Energy, Elsevier, vol. 187(C), pages 819-828.
    3. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    5. Coşgun, Ahmet & Günay, M. Erdem & Yıldırım, Ramazan, 2021. "Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning," Renewable Energy, Elsevier, vol. 163(C), pages 1299-1317.
    6. Hao Yuan & Yi Wang & Yanaoming Xi & Zeyi Jiang & Xinru Zhang & Xinyu Wang & Xinxin Zhang, 2020. "Light-Emitting Diode Power Conversion Capability and CO 2 Fixation Rate of Microalgae Biofilm Cultured Under Different Light Spectra," Energies, MDPI, vol. 13(7), pages 1-10, March.
    7. Zahra Shokravi & Hoofar Shokravi & Ong Hwai Chyuan & Woei Jye Lau & Seyed Saeid Rahimian Koloor & Michal Petrů & Ahmad Fauzi Ismail, 2020. "Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    8. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Snunkhaem Echaroj & Hwai Chyuan Ong & Xiuhan Chen, 2020. "Simulation of Mixing Intensity Profile for Bioethanol Production via Two-Step Fermentation in an Unbaffled Agitator Reactor," Energies, MDPI, vol. 13(20), pages 1-11, October.
    11. Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
    12. Kumar, Ravi Ranjan & Sarkar, Debasis & Sen, Ramkrishna, 2024. "Simultaneously maximizing microalgal biomass and lipid productivities by machine learning driven modeling, global sensitivity analysis and multi-objective optimization for sustainable biodiesel produc," Applied Energy, Elsevier, vol. 358(C).
    13. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    14. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    15. Thao Nguyen Luu & Zouheir Alsafra & Amélie Corato & Daniele Corsaro & Hung Anh Le & Gauthier Eppe & Claire Remacle, 2020. "Isolation and Characterization of Two Microalgal Isolates from Vietnam with Potential for Food, Feed, and Biodiesel Production," Energies, MDPI, vol. 13(4), pages 1-16, February.
    16. Li, Pengfei & Sun, Xin & Sun, Zhe & Huang, Feng & Wei, Wenqian & Liu, Xingshe & Liu, Yongjun & Deng, Linyu & Cheng, Zhiwen, 2021. "Biochemical and genetic changes revealing the enhanced lipid accumulation in Desmodesmus sp. mutated by atmospheric and room temperature plasma," Renewable Energy, Elsevier, vol. 172(C), pages 368-381.
    17. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    18. Vieira, Bruno & Nadaleti, Willian Cézar & Sarto, Ewerson, 2021. "The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification," Renewable Energy, Elsevier, vol. 165(P1), pages 657-667.
    19. Carolin Nuortila & Riikka Help & Katriina Sirviö & Helena Suopanki & Sonja Heikkilä & Seppo Niemi, 2020. "Selected Fuel Properties of Alcohol and Rapeseed Oil Blends," Energies, MDPI, vol. 13(15), pages 1-11, July.
    20. Yuan, Shuo & Lei, Wenbin & Liu, Qi & Liu, Runze & Liu, Jingping & Fu, Jianqin & Han, Yubo, 2023. "Distribution and environmental impact of microalgae production potential under the carbon-neutral target," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:964-:d:323412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.