IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp1-16.html
   My bibliography  Save this article

Trends and novel strategies for enhancing lipid accumulation and quality in microalgae

Author

Listed:
  • Singh, Poonam
  • Kumari, Sheena
  • Guldhe, Abhishek
  • Misra, Rohit
  • Rawat, Ismail
  • Bux, Faizal

Abstract

In order to realize the potential of microalgal biodiesel there is a need for substantial impetus involving interventions to radically improve lipid yields upstream. Nutrient stress and alteration to cultivation conditions are commonly used lipid enhancement strategies in microalgae. The main bottleneck of applying conventional strategies is their scalability as some of these strategies incur additional cost and energy. Novel lipid enhancement strategies have emerged to research forefront to overcome these challenges. In this review, the latest trends in microalgal lipid enhancement strategies, possible solutions and future directions are critically discussed. Advanced strategies such as combined nutrient and cultivation condition stress, microalgae–bacteria interactions, use of phytohormones EDTA and chemical additives, improving light conditions using LED, dyes and paints, and gene expression analysis are described. Molecular approaches such as metabolic and genetic engineering are emerging as the potential lipid enhancing strategies. Recent advancements in gene expression studies, genetic and metabolic engineering have shown promising results in enhancing lipid productivity in microalgae; however environmental risk and long term viability are still major challenges.

Suggested Citation

  • Singh, Poonam & Kumari, Sheena & Guldhe, Abhishek & Misra, Rohit & Rawat, Ismail & Bux, Faizal, 2016. "Trends and novel strategies for enhancing lipid accumulation and quality in microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1-16.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:1-16
    DOI: 10.1016/j.rser.2015.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
    3. De Bhowmick, Goldy & Koduru, Lokanand & Sen, Ramkrishna, 2015. "Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1239-1253.
    4. Teo, Siow Hwa & Islam, Aminul & Yusaf, Talal & Taufiq-Yap, Yun Hin, 2014. "Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst," Energy, Elsevier, vol. 78(C), pages 63-71.
    5. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    6. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    7. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    8. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    9. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    10. Tabatabaei, Meisam & Tohidfar, Masoud & Jouzani, Gholamreza Salehi & Safarnejad, Mohammadreza & Pazouki, Mohammad, 2011. "Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1918-1927, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yongteng & Qiao, Tengsheng & Gu, Dan & Zhu, Liyan & Yu, Xuya, 2022. "Stimulating biolipid production from the novel alga Ankistrodesmus sp. by coupling salt stress and chemical induction," Renewable Energy, Elsevier, vol. 183(C), pages 480-490.
    2. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Pandey, Ashutosh & Gupta, Aarti & Sunny, Arrabachala & Kumar, Sanjay & Srivastava, Sameer, 2020. "Multi-objective optimization of media components for improved algae biomass, fatty acid and starch biosynthesis from Scenedesmus sp. ASK22 using desirability function approach," Renewable Energy, Elsevier, vol. 150(C), pages 476-486.
    4. Zahra Shokravi & Hoofar Shokravi & Ong Hwai Chyuan & Woei Jye Lau & Seyed Saeid Rahimian Koloor & Michal Petrů & Ahmad Fauzi Ismail, 2020. "Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    5. Xie, Zhen & Pei, Haiyan & Zhang, Lijie & Yang, Zhigang & Nie, Changliang & Hou, Qingjie & Yu, Ze, 2020. "Accelerating lipid production in freshwater alga Chlorella sorokiniana SDEC-18 by seawater and ultrasound during the stationary phase," Renewable Energy, Elsevier, vol. 161(C), pages 448-456.
    6. Hussein El-Sayed Touliabah & Adel W. Almutairi, 2021. "Effect of Phytohormones Supplementation under Nitrogen Depletion on Biomass and Lipid Production of Nannochloropsis oceanica for Integrated Application in Nutrition and Biodiesel," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    7. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & El-Fatah Abomohra, Abd & Shanmugam, Sabarathinam & Ramakrishnan, Sankar Ganesh & Subrmaniam, Sadhasivam & K, Swaminathan, 2019. "Simultaneous induction of biomass and lipid production in Tetradesmus obliquus BPL16 through polysorbate supplementation," Renewable Energy, Elsevier, vol. 140(C), pages 807-815.
    8. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    9. Swati Dahiya & Raja Chowdhury & Wendong Tao & Pradeep Kumar, 2021. "Biomass and Lipid Productivity by Two Algal Strains of Chlorella sorokiniana Grown in Hydrolysate of Water Hyacinth," Energies, MDPI, vol. 14(5), pages 1-21, March.
    10. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    11. Ramanna, Luveshan & Rawat, Ismail & Bux, Faizal, 2017. "Light enhancement strategies improve microalgal biomass productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 765-773.
    12. Małgorzata Hawrot-Paw & Patryk Ratomski & Adam Koniuszy & Wojciech Golimowski & Mirosława Teleszko & Anna Grygier, 2021. "Fatty Acid Profile of Microalgal Oils as a Criterion for Selection of the Best Feedstock for Biodiesel Production," Energies, MDPI, vol. 14(21), pages 1-14, November.
    13. Seung-Woo Jo & Ji Won Hong & Jeong-Mi Do & Ho Na & Jin-Ju Kim & Seong-Im Park & Young-Saeng Kim & Il-Sup Kim & Ho-Sung Yoon, 2020. "Nitrogen Deficiency-Dependent Abiotic Stress Enhances Carotenoid Production in Indigenous Green Microalga Scenedesmus rubescens KNUA042, for Use as a Potential Resource of High Value Products," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    14. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    15. Usman, Muhammad & Salama, El-Sayed & Arif, Muhammad & Jeon, Byong-Hun & Li, Xiangkai, 2020. "Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & Hu, Xun & K, Swaminathan & Abomohra, Abd El-Fatah, 2020. "Application of p-coumaric acid for extraordinary lipid production in Tetradesmus obliquus: A sustainable approach towards enhanced biodiesel production," Renewable Energy, Elsevier, vol. 157(C), pages 368-376.
    17. Huanmin Du & Faruq Ahmed & Bin Lin & Zhe Li & Yuhan Huang & Guang Sun & Huan Ding & Chang Wang & Chunxiao Meng & Zhengquan Gao, 2017. "The Effects of Plant Growth Regulators on Cell Growth, Protein, Carotenoid, PUFAs and Lipid Production of Chlorella pyrenoidosa ZF Strain," Energies, MDPI, vol. 10(11), pages 1-23, October.
    18. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    19. Behera, Bunushree & Unpaprom, Yuwalee & Ramaraj, Rameshprabu & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj & Paramasivan, Balasubramanian, 2021. "Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    2. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    3. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    4. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.
    5. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    6. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    7. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    8. Banerjee, Avik & Guria, Chandan & Maiti, Subodh K., 2016. "Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock," Energy, Elsevier, vol. 115(P1), pages 1272-1290.
    9. Guldhe, Abhishek & Moura, Carla V.R. & Singh, Poonam & Rawat, Ismail & Moura, Edmilson M. & Sharma, Yogesh & Bux, Faizal, 2017. "Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst," Renewable Energy, Elsevier, vol. 105(C), pages 175-182.
    10. Rashid, Naim & Ur Rehman, Muhammad Saif & Sadiq, Madeha & Mahmood, Tariq & Han, Jong-In, 2014. "Current status, issues and developments in microalgae derived biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 760-778.
    11. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    12. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    13. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    14. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    15. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    16. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    17. Chen, Wei & Ma, Lin & Zhou, Peng-peng & Zhu, Yuan-min & Wang, Xiao-peng & Luo, Xin-an & Bao, Zhen-dong & Yu, Long-jiang, 2015. "A novel feedstock for biodiesel production: The application of palmitic acid from Schizochytrium," Energy, Elsevier, vol. 86(C), pages 128-138.
    18. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    19. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    20. Shen, Xiao-Fei & Liu, Jing-Jing & Chu, Fei-Fei & Lam, Paul K.S. & Zeng, Raymond J., 2015. "Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation," Applied Energy, Elsevier, vol. 158(C), pages 348-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.