IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9731-d625565.html
   My bibliography  Save this article

Biodiesel Production Using Modified Direct Transesterification by Sequential Use of Acid-Base Catalysis and Performance Evaluation of Diesel Engine Using Various Blends

Author

Listed:
  • T. M. Yunus Khan

    (Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
    Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Irfan Anjum Badruddin

    (Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
    Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Manzoore Elahi M. Soudagar

    (Department of Mechanical Engineering, School of Technology, Glocal University, Saharanpur 247121, India)

  • Sanjeev V. Khandal

    (Department of Mechanical Engineering, Sanjay Ghodawat University, Kolhapur 416118, India)

  • Sarfaraz Kamangar

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Imran Mokashi

    (Department of Mechanical Engineering, Bearys Institute of Technology, Mangalore 574153, India)

  • M. A. Mujtaba

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Nazia Hossain

    (School of Engineering, RMIT University, Melbourne, VIC 3000, Australia)

Abstract

Biodiesel is a seemingly suitable alternative substitute for conventional fossil fuels to run a diesel engine. In the first part of the study, the production of biodiesel by modified direct transesterification (MDT) is reported. An enhancement in the biodiesel yield with a considerable reduction in reaction time with the MDT method was observed. The required duration for diesel and biodiesel blending was minimized including glycerol separation time from biodiesel in the MDT method. The development in the automotive sector mainly focuses on the design of an efficient, economical, and low emission greenhouse gas diesel engine. In the current experimental work Ceiba pentandra / Nigella sativa and diesel blends (CPB10 and NSB10) were used to run the diesel engine. A variety of approaches were implemented to improve the engine performance for these combinations of fuels. The fuel injector opening pressure (IOP) was set at 240 bar, the torriodal re-entrant combustion chamber (TRCC) having a six-hole injector with a 0.2 mm orifice diameter each, provided better brake thermal efficiency (BTE) with lower emissions compared with the hemispherical combustion chamber (HCC) and trapezoidal combustion chamber (TCC) for both CPB10 and NSB10. CPB10 showed better performance compared with NSB10. A maximum BTE of 29.1% and 28.6% were achieved with CPB10 and NSB10, respectively, at all optimized conditions. Diesel engine operation with CPB10 and NSB10 at 23° bTDC fuel injection timing, and 240 bar IOP with TRCC can yield better results, close to a diesel run engine at 23° bTDC fuel injection timing, and 205 bar IOP with HCC.

Suggested Citation

  • T. M. Yunus Khan & Irfan Anjum Badruddin & Manzoore Elahi M. Soudagar & Sanjeev V. Khandal & Sarfaraz Kamangar & Imran Mokashi & M. A. Mujtaba & Nazia Hossain, 2021. "Biodiesel Production Using Modified Direct Transesterification by Sequential Use of Acid-Base Catalysis and Performance Evaluation of Diesel Engine Using Various Blends," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9731-:d:625565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nwafor, O.M.I. & Rice, G. & Ogbonna, A.I., 2000. "Effect of advanced injection timing on the performance of rapeseed oil in diesel engines," Renewable Energy, Elsevier, vol. 21(3), pages 433-444.
    2. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    3. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    4. Çelikten, İsmet & Koca, Atilla & Ali Arslan, Mehmet, 2010. "Comparison of performance and emissions of diesel fuel, rapeseed and soybean oil methyl esters injected at different pressures," Renewable Energy, Elsevier, vol. 35(4), pages 814-820.
    5. Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
    6. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    7. Ganapathy, T. & Gakkhar, R.P. & Murugesan, K., 2011. "Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine," Applied Energy, Elsevier, vol. 88(12), pages 4376-4386.
    8. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    9. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2017. "Effect of exhaust gas recirculation, fuel injection pressure and injection timing on the performance of common rail direct injection engine powered with honge biodiesel (BHO)," Energy, Elsevier, vol. 139(C), pages 828-841.
    10. Puhan, Sukumar & Jegan, R. & Balasubbramanian, K. & Nagarajan, G., 2009. "Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine," Renewable Energy, Elsevier, vol. 34(5), pages 1227-1233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wirawan, Soni S. & Solikhah, Maharani D. & Setiapraja, Hari & Sugiyono, Agus, 2024. "Biodiesel implementation in Indonesia: Experiences and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    2. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    3. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    4. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    5. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    6. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    7. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    8. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    9. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    10. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    11. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    12. Pandian, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel-d," Applied Energy, Elsevier, vol. 88(8), pages 2663-2676, August.
    13. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    14. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    15. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    16. Gautam, Raghvendra & Chauhan, Bhupendra Singh & Chang Lim, Hee, 2022. "Influence of variation of injection angle on the combustion, performance and emissions characteristics of Jatropha Ethyl Ester," Energy, Elsevier, vol. 254(PC).
    17. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    18. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    19. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    20. Imtenan, S. & Ashrafur Rahman, S.M. & Masjuki, H.H. & Varman, M. & Kalam, M.A., 2015. "Effect of dynamic injection pressure on performance, emission and combustion characteristics of a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1205-1211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9731-:d:625565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.