IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v130y2014icp212-221.html
   My bibliography  Save this article

Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine

Author

Listed:
  • Agarwal, Avinash Kumar
  • Dhar, Atul
  • Gupta, Jai Gopal
  • Kim, Woong Il
  • Lee, Chang Sik
  • Park, Sungwook

Abstract

In this paper, effect of varying fuel injection pressures and injection timings on particulate size number distribution and spray characteristics was investigated in a single cylinder, common rail direct injection (CRDI) compression ignition (CI) engine fueled with Karanja biodiesel blends vis-à-vis baseline mineral diesel. The investigation results of spray tip penetration and spray area of biodiesel blends and diesel showed that higher fuel injection pressure result in a longer spray tip penetration and larger spray area than that at lower injection pressures at same elapsed time after the start of injection (SOI). In order to compare the effect of fuel injection parameters, 10, 20 and 50% Karanja biodiesel blends at 1500rpm engine speed were compared with baseline data from mineral diesel. It was observed that average particulate size increased with retarding the SOI timings. Particulate number concentration was lowest for 10% biodiesel blend, which increased with further increase in biodiesel content in the blended test fuel. Addition of even very small quantity of biodiesel in the test fuel helped in reducing particulate emissions.

Suggested Citation

  • Agarwal, Avinash Kumar & Dhar, Atul & Gupta, Jai Gopal & Kim, Woong Il & Lee, Chang Sik & Park, Sungwook, 2014. "Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 212-221.
  • Handle: RePEc:eee:appene:v:130:y:2014:i:c:p:212-221
    DOI: 10.1016/j.apenergy.2014.05.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914005364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.05.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2011. "Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel," Applied Energy, Elsevier, vol. 88(1), pages 88-98, January.
    2. Agarwal, Avinash Kumar & Dhar, Atul, 2013. "Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine," Renewable Energy, Elsevier, vol. 52(C), pages 283-291.
    3. Agarwal, Avinash Kumar & Gupta, Tarun & Kothari, Abhishek, 2011. "Particulate emissions from biodiesel vs diesel fuelled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3278-3300, August.
    4. Giakoumis, Evangelos G., 2012. "A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles," Applied Energy, Elsevier, vol. 98(C), pages 273-291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Wenbo Ai & Haeng Muk Cho, 2024. "Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review," Energies, MDPI, vol. 17(19), pages 1-25, September.
    4. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    5. Kim, Hyung Jun & Jo, Seongin & Lee, Jong-Tae & Park, Suhan, 2020. "Biodiesel fueled combustion performance and emission characteristics under various intake air temperature and injection timing conditions," Energy, Elsevier, vol. 206(C).
    6. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    7. Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization," Applied Energy, Elsevier, vol. 88(4), pages 1068-1074, April.
    8. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    9. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    10. Armas, Octavio & García-Contreras, Reyes & Ramos, Ángel, 2013. "Impact of alternative fuels on performance and pollutant emissions of a light duty engine tested under the new European driving cycle," Applied Energy, Elsevier, vol. 107(C), pages 183-190.
    11. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    12. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    13. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    14. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    15. Tyler Simpson & Christopher Depcik, 2022. "Multiple Fuel Injection Strategies for Compression Ignition Engines," Energies, MDPI, vol. 15(14), pages 1-29, July.
    16. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Reddy, M. Sarveshwar & Sharma, Nikhil & Agarwal, Avinash Kumar, 2016. "Effect of straight vegetable oil blends and biodiesel blends on wear of mechanical fuel injection equipment of a constant speed diesel engine," Renewable Energy, Elsevier, vol. 99(C), pages 1008-1018.
    18. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    19. Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Agarwal, Rashmi A. & Gupta, Tarun & Kumar Agarwal, Avinash, 2017. "Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application," Applied Energy, Elsevier, vol. 206(C), pages 1203-1213.
    20. Agarwal, Avinash Kumar & Chandra Shukla, Pravesh & Patel, Chetankumar & Gupta, Jai Gopal & Sharma, Nikhil & Prasad, Rajesh Kumar & Agarwal, Rashmi A., 2016. "Unregulated emissions and health risk potential from biodiesel (KB5, KB20) and methanol blend (M5) fuelled transportation diesel engines," Renewable Energy, Elsevier, vol. 98(C), pages 283-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:130:y:2014:i:c:p:212-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.