IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v66y2016icp163-173.html
   My bibliography  Save this article

A review disaggregation method in Non-intrusive Appliance Load Monitoring

Author

Listed:
  • Esa, Nur Farahin
  • Abdullah, Md Pauzi
  • Hassan, Mohammad Yusri

Abstract

The development of home energy management have increased due to energy saving. Instead of Intrusive Load Monitoring (IALM) which requires individual sensor for each appliance, Non-Intrusive Appliance Load Monitoring (NIALM) is an advanced low-cost system that requires fewer sensors and disaggregates load data in a different way. NIALM is a study to determine energy consumption of individual appliances measured at a single power source point. This system disaggregates data from a total power load and analyses power consumption of an appliance so that consumer can monitor the total power usage of a building. This paper reviews several feature extractions, state-of-the-art load signatures and disaggregation algorithms used for appliance recognition in NIALM method.

Suggested Citation

  • Esa, Nur Farahin & Abdullah, Md Pauzi & Hassan, Mohammad Yusri, 2016. "A review disaggregation method in Non-intrusive Appliance Load Monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 163-173.
  • Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:163-173
    DOI: 10.1016/j.rser.2016.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsueh-Hsien Chang, 2012. "Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses," Energies, MDPI, vol. 5(11), pages 1-21, November.
    2. Paula Meehan & Conor McArdle & Stephen Daniels, 2014. "An Efficient, Scalable Time-Frequency Method for Tracking Energy Usage of Domestic Appliances Using a Two-Step Classification Algorithm," Energies, MDPI, vol. 7(11), pages 1-26, October.
    3. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    2. Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
    3. Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
    4. Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.
    5. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
    6. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
    7. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    8. Darío Baptista & Sheikh Shanawaz Mostafa & Lucas Pereira & Leonel Sousa & Fernando Morgado-Dias, 2018. "Implementation Strategy of Convolution Neural Networks on Field Programmable Gate Arrays for Appliance Classification Using the Voltage and Current (V-I) Trajectory," Energies, MDPI, vol. 11(9), pages 1-18, September.
    9. Enríquez, R. & Jiménez, M.J. & Heras, M.R., 2017. "Towards non-intrusive thermal load Monitoring of buildings: BES calibration," Applied Energy, Elsevier, vol. 191(C), pages 44-54.
    10. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Sara Tavakoli & Kaveh Khalilpour, 2021. "A Practical Load Disaggregation Approach for Monitoring Industrial Users Demand with Limited Data Availability," Energies, MDPI, vol. 14(16), pages 1-27, August.
    13. Augustyn Wójcik & Piotr Bilski & Robert Łukaszewski & Krzysztof Dowalla & Ryszard Kowalik, 2021. "Identification of the State of Electrical Appliances with the Use of a Pulse Signal Generator," Energies, MDPI, vol. 14(3), pages 1-26, January.
    14. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.
    15. Wang, Shuangyuan & Li, Ran & Evans, Adrian & Li, Furong, 2020. "Regional nonintrusive load monitoring for low voltage substations and distributed energy resources," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    2. Anwar Ul Haq & Hans-Arno Jacobsen, 2018. "Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    4. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    5. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    6. Katarzyna Stasiuk & Dominika Maison, 2022. "The Influence of New and Old Energy Labels on Consumer Judgements and Decisions about Household Appliances," Energies, MDPI, vol. 15(4), pages 1-13, February.
    7. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    8. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    9. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    10. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    12. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    13. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    14. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    15. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    16. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    17. Antonio Paola & David Angeli & Goran Strbac, 2018. "On Distributed Scheduling of Flexible Demand and Nash Equilibria in the Electricity Market," Dynamic Games and Applications, Springer, vol. 8(4), pages 761-798, December.
    18. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    19. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    20. Zúñiga, K.V. & Castilla, I. & Aguilar, R.M., 2014. "Using fuzzy logic to model the behavior of residential electrical utility customers," Applied Energy, Elsevier, vol. 115(C), pages 384-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:163-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.