IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v192y2017icp71-82.html
   My bibliography  Save this article

Capacity value estimation of a load-shifting resource using a coupled building and power system model

Author

Listed:
  • Nolan, Sheila
  • Neu, Olivier
  • O’Malley, Mark

Abstract

Understanding the contribution a resource can make to the power system could indicate where its value lies. This paper estimates the capacity value of a load-shifting resource which is capable of providing multiple services. The capacity value represents the contribution of a resource to generation adequacy and an understanding of this contribution is important to compare how different power system resources can assist power system operators and planners. Additionally, policy-makers and market operators need an appreciation of the capacity value of different resources in order to design capacity remuneration mechanisms. A building energy model coupled with a power system model, co-optimizing the supply-side and the demand-side, is employed in this paper to estimate the capacity value of a specific load-shifting resource. The resource examined is electric thermal storage heating devices for space and water heating. Ireland is used as a test case. It was found that these load-shifting devices can provide an adequacy contribution to the power system and thus have a capacity value. The capacity value, for the Irish case, can be up to 26% for the DR resource in question for the given year but the values are typically much lower due to operational constraints (reserve provision) and due to occupancy profile impacts. The results highlight the need for holistic modeling of demand response resources, as well as the need for additional work for different load-shifting resources and more data.

Suggested Citation

  • Nolan, Sheila & Neu, Olivier & O’Malley, Mark, 2017. "Capacity value estimation of a load-shifting resource using a coupled building and power system model," Applied Energy, Elsevier, vol. 192(C), pages 71-82.
  • Handle: RePEc:eee:appene:v:192:y:2017:i:c:p:71-82
    DOI: 10.1016/j.apenergy.2017.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
    2. Zerrahn, Alexander & Schill, Wolf-Peter, 2015. "On the representation of demand-side management in power system models," Energy, Elsevier, vol. 84(C), pages 840-845.
    3. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    4. Peacock, A.D. & Newborough, M., 2006. "Impact of micro-combined heat-and-power systems on energy flows in the UK electricity supply industry," Energy, Elsevier, vol. 31(12), pages 1804-1818.
    5. Shiljkut, Vladimir M. & Rajakovic, Nikola Lj., 2015. "Demand response capacity estimation in various supply areas," Energy, Elsevier, vol. 92(P3), pages 476-486.
    6. Bradley, Peter & Leach, Matthew & Torriti, Jacopo, 2013. "A review of the costs and benefits of demand response for electricity in the UK," Energy Policy, Elsevier, vol. 52(C), pages 312-327.
    7. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lynch, Muireann Á. & Nolan, Sheila & Devine, Mel T. & O’Malley, Mark, 2019. "The impacts of demand response participation in capacity markets," Applied Energy, Elsevier, vol. 250(C), pages 444-451.
    2. Brito-Pereira, Paulo & Rodilla, Pablo & Mastropietro, Paolo & Batlle, Carlos, 2022. "Self-fulfilling or self-destroying prophecy? The relevance of de-rating factors in modern capacity mechanisms," Applied Energy, Elsevier, vol. 314(C).
    3. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    4. Zhou, Ella & Cole, Wesley & Frew, Bethany, 2018. "Valuing variable renewable energy for peak demand requirements," Energy, Elsevier, vol. 165(PA), pages 499-511.
    5. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    6. Tómasson, Egill & Söder, Lennart, 2020. "Coordinated optimal strategic demand reserve procurement in multi-area power systems," Applied Energy, Elsevier, vol. 270(C).
    7. Hungerford, Zoe & Bruce, Anna & MacGill, Iain, 2019. "The value of flexible load in power systems with high renewable energy penetration," Energy, Elsevier, vol. 188(C).
    8. Lynch, Muireann & Devine, Mel T. & Bertsch, Valentin, 2019. "The role of power-to-gas in the future energy system: Market and portfolio effects," Energy, Elsevier, vol. 185(C), pages 1197-1209.
    9. Andersen, Frits Møller & Baldini, Mattia & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2017. "Households’ hourly electricity consumption and peak demand in Denmark," Applied Energy, Elsevier, vol. 208(C), pages 607-619.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    2. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    3. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    4. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    5. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    6. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    7. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    8. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    9. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    10. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    11. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    12. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.
    14. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    15. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
    16. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    17. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    18. Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.
    19. Jiang, Bo & Muzhikyan, Aramazd & Farid, Amro M. & Youcef-Toumi, Kamal, 2017. "Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 187(C), pages 833-846.
    20. Alejandro Tristán & Flurina Heuberger & Alexander Sauer, 2020. "A Methodology to Systematically Identify and Characterize Energy Flexibility Measures in Industrial Systems," Energies, MDPI, vol. 13(22), pages 1-35, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:192:y:2017:i:c:p:71-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.