IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1215-d743948.html
   My bibliography  Save this article

Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection

Author

Listed:
  • Inoussa Laouali

    (DEEI, Faculty of Science & Technology, University of Algarve, 8005-294 Faro, Portugal
    SIGER, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez P.O. Box 2202, Morocco)

  • Antonio Ruano

    (DEEI, Faculty of Science & Technology, University of Algarve, 8005-294 Faro, Portugal
    IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1950-044 Lisboa, Portugal)

  • Maria da Graça Ruano

    (DEEI, Faculty of Science & Technology, University of Algarve, 8005-294 Faro, Portugal
    CISUC, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Saad Dosse Bennani

    (SIGER, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez P.O. Box 2202, Morocco)

  • Hakim El Fadili

    (LIPI, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Bensouda, Fez P.O. Box 5206, Morocco)

Abstract

The availability of smart meters and IoT technology has opened new opportunities, ranging from monitoring electrical energy to extracting various types of information related to household occupancy, and with the frequency of usage of different appliances. Non-intrusive load monitoring (NILM) allows users to disaggregate the usage of each device in the house using the total aggregated power signals collected from a smart meter that is typically installed in the household. It enables the monitoring of domestic appliance use without the need to install individual sensors for each device, thus minimizing electrical system complexities and associated costs. This paper proposes an NILM framework based on low frequency power data using a convex hull data selection approach and hybrid deep learning architecture. It employs a sliding window of aggregated active and reactive powers sampled at 1 Hz. A randomized approximation convex hull data selection approach performs the selection of the most informative vertices of the real convex hull. The hybrid deep learning architecture is composed of two models: a classification model based on a convolutional neural network trained with a regression model based on a bidirectional long-term memory neural network. The results obtained on the test dataset demonstrate the effectiveness of the proposed approach, achieving F1 values ranging from 0.95 to 0.99 for the four devices considered and estimation accuracy values between 0.88 and 0.98. These results compare favorably with the performance of existing approaches.

Suggested Citation

  • Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1215-:d:743948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Bertoldi & Marina Economidou & Valentina Palermo & Benigna Boza‐Kiss & Valeria Todeschi, 2021. "How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.
    2. Sofia Tsemekidi Tzeiranaki & Paolo Bertoldi & Francesca Diluiso & Luca Castellazzi & Marina Economidou & Nicola Labanca & Tiago Ribeiro Serrenho & Paolo Zangheri, 2019. "Analysis of the EU Residential Energy Consumption: Trends and Determinants," Energies, MDPI, vol. 12(6), pages 1-27, March.
    3. Abubakar, I. & Khalid, S.N. & Mustafa, M.W. & Shareef, Hussain & Mustapha, M., 2017. "Application of load monitoring in appliances’ energy management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 235-245.
    4. Esa, Nur Farahin & Abdullah, Md Pauzi & Hassan, Mohammad Yusri, 2016. "A review disaggregation method in Non-intrusive Appliance Load Monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 163-173.
    5. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    6. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
    7. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    8. İsmail Hakkı ÇAVDAR & Vahid FARYAD, 2019. "New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid," Energies, MDPI, vol. 12(7), pages 1-18, March.
    9. Marco Fagiani & Roberto Bonfigli & Emanuele Principi & Stefano Squartini & Luigi Mandolini, 2019. "A Non-Intrusive Load Monitoring Algorithm Based on Non-Uniform Sampling of Power Data and Deep Neural Networks," Energies, MDPI, vol. 12(7), pages 1-26, April.
    10. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    11. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    12. Balezentis, Tomas, 2020. "Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A case from Eastern Europe," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Okazawa & Naoya Kaneko & Dafang Zhao & Hiroki Nishikawa & Ittetsu Taniguchi & Francky Catthoor & Takao Onoye, 2024. "Evaluation of Deep Learning-Based Non-Intrusive Thermal Load Monitoring," Energies, MDPI, vol. 17(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    2. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    3. Patricia Franco & José M. Martínez & Young-Chon Kim & Mohamed A. Ahmed, 2022. "A Cyber-Physical Approach for Residential Energy Management: Current State and Future Directions," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    4. Agnieszka Napiorkowska-Baryla & Miroslawa Witkowska-Dabrowska & Natalia Swidynska, 2022. "Financing of Activities Increasing the Energy Efficiency of Residential Buildings in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 690-712.
    5. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    6. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    7. Minyoung Kwon & Erwin Mlecnik & Vincent Gruis, 2021. "Business Model Development for Temporary Home Renovation Consultancy Centres: Experiences from European Pop-Ups," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    8. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
    9. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    10. Todic, Tamara & Stankovic, Vladimir & Stankovic, Lina, 2023. "An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem," Applied Energy, Elsevier, vol. 341(C).
    11. Inoussa Laouali & Isaías Gomes & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili & Antonio Ruano, 2022. "Energy Disaggregation Using Multi-Objective Genetic Algorithm Designed Neural Networks," Energies, MDPI, vol. 15(23), pages 1-29, November.
    12. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
    13. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Yu, Lu & Wu, Shuang & Jiang, Lu & Ding, Bowenpeng & Shi, Xiaonan, 2022. "Do more efficient buildings lead to lower household energy consumption for cooling? Evidence from Guangzhou, China," Energy Policy, Elsevier, vol. 168(C).
    15. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.
    16. Mingzhi Yang & Yue Liu & Quanlong Liu, 2021. "Nonintrusive Residential Electricity Load Decomposition Based on Transfer Learning," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    17. Hao Ma & Juncheng Jia & Xinhao Yang & Weipeng Zhu & Hong Zhang, 2021. "MC-NILM: A Multi-Chain Disaggregation Method for NILM," Energies, MDPI, vol. 14(14), pages 1-14, July.
    18. Chen, Zeyu & Tang, Yuhong & Shen, Hebin & Liu, Jiali & Hu, Zheng, 2024. "Threshold effects of Government digital development and land resource disparity on Urban carbon efficiency in China," Resources Policy, Elsevier, vol. 94(C).
    19. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    20. Namahoro, J.P. & Wu, Q. & Su, H., 2023. "Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1215-:d:743948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.