IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3876-d276080.html
   My bibliography  Save this article

High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar

Author

Listed:
  • Omar Alrawi

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University. Doha 34110, Qatar)

  • I. Safak Bayram

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University. Doha 34110, Qatar
    Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar)

  • Sami G. Al-Ghamdi

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University. Doha 34110, Qatar)

  • Muammer Koc

    (Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University. Doha 34110, Qatar)

Abstract

Even though Qatar’s per capita electricity consumption is one of the highest in the world, little is currently known about behind-the-meter power consumption. The residential sector is the largest consumer of electricity, accounting for approximately 59% of the overall consumption of electricity. As energy subsidies lead to budget deficits and overconsumption of carbon resources, there is a pressing need to examine the residential load profile to better understand consumption patterns and uncover potential solutions for more efficient usage. Residential load profiles are typically influenced by seasonal and socio-economic factors. Furthermore, household load profiles can be used to examine the viability of rooftop photovoltaic (PV) systems. In this study, a total of 10 houses in Qatar were chosen, and their power demand was monitored for over a year using smart energy monitors. This empirical research was conducted to achieve the following goals: (1) creation of the first high-resolution residential load profiles in Qatar and in the Gulf region; (2) analyses of the acquired load profiles and the determining factors that affect energy consumption; and (3) calculation of self-consumption values, analysis of the viability of household rooftop PV systems, and discussing potential use-cases for energy storage systems. Investigation of this topic is particularly important for Qatar as the country is adopting a sizable portion of PV systems (5% by 2021) and promotes sustainable energy options as a part of a national development strategy. Results show that there are significant differences between per-household and per-capita consumption due to factors such as electricity subsidies, household income and size, and air-conditioner type. Moreover, due to high electricity consumption, distributed energy storage units for bill management applications have limited applicability with current pricing tariffs. To the best of authors’ knowledge, this is the first study conducted in Qatar and in the Gulf region where a growing amount of interest is given to measure and improve building energy performance.

Suggested Citation

  • Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3876-:d:276080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Esa, Nur Farahin & Abdullah, Md Pauzi & Hassan, Mohammad Yusri, 2016. "A review disaggregation method in Non-intrusive Appliance Load Monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 163-173.
    2. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    3. Bayram, Islam Safak & Ustun, Taha Selim, 2017. "A survey on behind the meter energy management systems in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1208-1232.
    4. Vine, Edward L., 1996. "International DSM and DSM program evaluation: An indeep assessment," Energy, Elsevier, vol. 21(10), pages 983-996.
    5. Khalilpour, Kaveh Rajab & Vassallo, Anthony, 2016. "Technoeconomic parametric analysis of PV-battery systems," Renewable Energy, Elsevier, vol. 97(C), pages 757-768.
    6. Chen, Victor L. & Delmas, Magali A. & Kaiser, William J. & Locke, Stephen L., 2015. "What can we learn from high-frequency appliance-level energy metering? Results from a field experiment," Energy Policy, Elsevier, vol. 77(C), pages 164-175.
    7. Mohandes, Nassma & Sanfilippo, Antonio & Al Fakhri, Marwa, 2019. "Modeling residential adoption of solar energy in the Arabian Gulf Region," Renewable Energy, Elsevier, vol. 131(C), pages 381-389.
    8. Nyholm, Emil & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 183(C), pages 148-159.
    9. Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.
    10. Dulleck, Uwe & Kaufmann, Sylvia, 2004. "Do customer information programs reduce household electricity demand?--the Irish program," Energy Policy, Elsevier, vol. 32(8), pages 1025-1032, June.
    11. Shin-ichi Inage, 2010. "Modelling Load Shifting Using Electric Vehicles in a Smart Grid Environment," IEA Energy Papers 2010/7, OECD Publishing.
    12. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    13. Al-Iriani, Mahmoud A., 2005. "Climate-related electricity demand-side management in oil-exporting countries--the case of the United Arab Emirates," Energy Policy, Elsevier, vol. 33(18), pages 2350-2360, December.
    14. Hoevenaars, Eric J. & Crawford, Curran A., 2012. "Implications of temporal resolution for modeling renewables-based power systems," Renewable Energy, Elsevier, vol. 41(C), pages 285-293.
    15. Martín-Pomares, Luis & Martínez, Diego & Polo, Jesús & Perez-Astudillo, Daniel & Bachour, Dunia & Sanfilippo, Antonio, 2017. "Analysis of the long-term solar potential for electricity generation in Qatar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1231-1246.
    16. Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
    17. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    18. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Nasser Alqahtani & Nazmiye Balta-Ozkan, 2021. "Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia," Energies, MDPI, vol. 14(13), pages 1-21, June.
    3. Omar Alrawi & Islam Safak Bayram & Muammer Koc & Sami G. Al-Ghamdi, 2022. "Economic Viability of Rooftop Photovoltaic Systems and Energy Storage Systems in Qatar," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    5. Ayed Banibaqash & Ziad Hunaiti & Maysam Abbod, 2022. "An Analytical Feasibility Study for Solar Panel Installation in Qatar Based on Generated to Consumed Electrical Energy Indicator," Energies, MDPI, vol. 15(24), pages 1-16, December.
    6. Sofiane Kichou & Nikolaos Skandalos & Petr Wolf, 2020. "Evaluation of Photovoltaic and Battery Storage Effects on the Load Matching Indicators Based on Real Monitored Data," Energies, MDPI, vol. 13(11), pages 1-20, May.
    7. Francesco Pietro Colelli & Enrica De Cian & Wilmer Pasut & Lucia Piazza, 2023. "Toward Net Zero in the midst of the energy and climate crises: the response of residential photovoltaic systems," Working Papers 2023:18, Department of Economics, University of Venice "Ca' Foscari".
    8. Slawomir Gulkowski, 2022. "Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastern Poland," Energies, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    2. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    3. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    4. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    5. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    7. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2018. "Use of weather forecast for increasing the self-consumption rate of home solar systems: An Italian case study," Applied Energy, Elsevier, vol. 212(C), pages 746-758.
    8. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.
    9. Nyholm, Emil & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 183(C), pages 148-159.
    10. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    11. Solano, J.C. & Olivieri, L. & Caamaño-Martín, E., 2017. "Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control," Applied Energy, Elsevier, vol. 206(C), pages 249-266.
    12. Ayala-Gilardón, A. & Sidrach-de-Cardona, M. & Mora-López, L., 2018. "Influence of time resolution in the estimation of self-consumption and self-sufficiency of photovoltaic facilities," Applied Energy, Elsevier, vol. 229(C), pages 990-997.
    13. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2017. "Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid," Applied Energy, Elsevier, vol. 195(C), pages 786-799.
    14. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    15. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    16. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    17. Hirschburger, Rafael & Weidlich, Anke, 2020. "Profitability of photovoltaic and battery systems on municipal buildings," Renewable Energy, Elsevier, vol. 153(C), pages 1163-1173.
    18. Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
    19. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
    20. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3876-:d:276080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.